Printed cells to treat burn victims

April 12, 2010 by Lin Edwards, Medical Xpress report

A device used to bioprint skin onto burns demonstration. Image credit: Wake Forest Institute of Regenerative Medicine/Handout
(PhysOrg.com) -- A medical device that works rather like an inkjet printer is being developed in the US to heal burns and other wounds by "printing" skin cells directly onto the wound. The device, called a bioprinter, may reduce the need for skin grafts. It would be mounted on a wheeled frame and positioned over the bed of the patient.

A laser inside the bioprinter, which was developed at Wake Forest University School of Medicine in Winston-Salem, North Carolina, first measures the size and shape of the wound and then applies specific precisely where they are needed. The skin cell spray is produced by dissolving from pieces of skin and then separating cell types such as keratinocytes and fibroblasts. The purified cells are then incubated in a nutrient solution where they multiply. They are then placed into sterilized cartridges and sprayed onto the wound by a similar process to a multi-color , with the fibroblasts sprayed on first followed by a layer of keratinocytes. The sprayed-on cells form a protective shield for the wound.

The device has so far only been tested on mice, but the initial results show wounds heal quickly and safely, with wounds healing three weeks faster than those that were untreated. Professor of regenerative medicine at the University, George Christ, said the group would next test the device on pigs, who have skin resembling human skin. They will eventually apply for approval from the US to allow them to carry out human trials. The team is also liaising with the US Armed Forces Institute of Regenerative Medicine with the aim of producing a device that could be used to treat wounded soldiers in Afghanistan and Iraq.

Victims of severe burns can die of infection within a couple of weeks unless if they do not receive , but the grafts can leave serious scarring. In the bioprinter the skin cells became integrated in the surrounding skin, which the researchers said was probably because the sprayed cells included immature stem cells. Student Kyle Binder, who helped design the device said when the cells were put into the wound, they “know what to do”.

Related Stories

Recommended for you

Researchers hope to be able to replace dysfunctional brain cells

November 20, 2018
A new study by researchers at Karolinska Institutet supports the theory that replacement of dysfunctional immune cells in the brain has therapeutic potential for neurodegenerative diseases like ALS and Alzheimer's disease. ...

RNAi therapy mitigates preeclampsia symptoms

November 19, 2018
A collaboration of scientists from the University of Massachusetts Medical School, Beth Israel Deaconess Medical Center and Western Sydney University, have shown that an innovative new type of therapy using small interfering ...

Skeletal imitation reveals how bones grow atom-by-atom

November 19, 2018
Researchers from Chalmers University of Technology, Sweden, have discovered how our bones grow at an atomic level, showing how an unstructured mass orders itself into a perfectly arranged bone structure. The discovery offers ...

Signal peptides' novel role in glutamate receptor trafficking and neural synaptic activity

November 19, 2018
Glutamate is the major excitatory neurotransmitter in the brain, and the postsynaptic expression level of glutamate receptors is a critical factor in determining the efficiency of information transmission and the activity ...

New insights into how an ordinary stem cell becomes a powerful immune agent

November 19, 2018
How do individual developing cells choose and commit to their "identity"—to become, for example, an immune cell, or a muscle cell, or a neuron?

A molecule for fighting muscular paralysis

November 19, 2018
Myotubular myopathy is a severe genetic disease that leads to muscle paralysis from birth and results in death before two years of age. Although no treatment currently exists, researchers from the University of Geneva (UNIGE), ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.