Printed cells to treat burn victims

April 12, 2010 by Lin Edwards, Medical Xpress report
A device used to bioprint skin onto burns demonstration. Image credit: Wake Forest Institute of Regenerative Medicine/Handout

(PhysOrg.com) -- A medical device that works rather like an inkjet printer is being developed in the US to heal burns and other wounds by "printing" skin cells directly onto the wound. The device, called a bioprinter, may reduce the need for skin grafts. It would be mounted on a wheeled frame and positioned over the bed of the patient.

A laser inside the bioprinter, which was developed at Wake Forest University School of Medicine in Winston-Salem, North Carolina, first measures the size and shape of the wound and then applies specific precisely where they are needed. The skin cell spray is produced by dissolving from pieces of skin and then separating cell types such as keratinocytes and fibroblasts. The purified cells are then incubated in a nutrient solution where they multiply. They are then placed into sterilized cartridges and sprayed onto the wound by a similar process to a multi-color , with the fibroblasts sprayed on first followed by a layer of keratinocytes. The sprayed-on cells form a protective shield for the wound.

The device has so far only been tested on mice, but the initial results show wounds heal quickly and safely, with wounds healing three weeks faster than those that were untreated. Professor of regenerative medicine at the University, George Christ, said the group would next test the device on pigs, who have skin resembling human skin. They will eventually apply for approval from the US to allow them to carry out human trials. The team is also liaising with the US Armed Forces Institute of Regenerative Medicine with the aim of producing a device that could be used to treat wounded soldiers in Afghanistan and Iraq.

Victims of severe burns can die of infection within a couple of weeks unless if they do not receive , but the grafts can leave serious scarring. In the bioprinter the skin cells became integrated in the surrounding skin, which the researchers said was probably because the sprayed cells included immature stem cells. Student Kyle Binder, who helped design the device said when the cells were put into the wound, they “know what to do”.

Related Stories

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.