Cellular and molecular events that restrict HIV transmission identified

July 1, 2010, Public Library of Science

Researchers from Boston University School of Medicine (BUSM) have identified two molecules that when activated by drugs, can inhibit a number of specific aspects of HIV transmission. These findings, published July 1 in the open-access journal PLoS Pathogens, may lead to therapies that target mucosal HIV transmission.

Worldwide, heterosexual transmission accounts for most new HIV infections, with a majority of these occurring in developing countries. within the vaginal, cervical, or rectal mucosa are thought to be the primary targets of infection in the of HIV.

According to the authors, dendritic cells (DCs) that reside in mucosal tissues play a critical role in . They can efficiently capture viruses, migrate to , and there, in a process called trans-infection, transmit virus to T cells, the main cell supporting . In addition, DCs can promote mucosal inflammation that helps to create a favorable environment for virus replication.

Certain members of the nuclear receptor family of gene regulators, including PPARγ and LXR, have been shown to be potent inhibitors of inflammation. The BUSM researchers therefore sought to determine whether drugs that activate PPARγ and LXR could inhibit steps in HIV transmission. To do so, they isolated DCs and T cells from blood and examined the effects of PPARγ and LXR activation on HIV transmission.

The researchers report that drugs that activate PPARγ and LXR inhibit the ability of DCs to capture HIV and transfer it to . In addition, these same drugs were shown to inhibit inflammation that can be induced in response to bacterial infections such as Neisseria gonorrhoeae, which is known to increase the incidence of sexual transmission of HIV.

"Most importantly, we found that these drugs inhibited DC-mediated trans-infection up to 5-fold, underscoring their potential to limit HIV transmission," said senior author Gregory Viglianti, PhD, an associate professor of microbiology at BUSM.

"In the absence of an effective vaccine, there is an increasing demand for the development of effective microbicides that block HIV sexual transmission. Our studies suggest that PPARγ and LXR may be targets for drugs that can simultaneously inhibit a number of aspects of HIV mucosal transmission, including inflammation, DC migration and DC-mediated HIV dissemination. Our findings therefore, provide a rationale for combining drugs that target PPARγ and LXR with conventional anti-viral microbicides that target other aspects of mucosal HIV transmission," he added.

More information: Hanley TM, Blay Puryear W, Gummuluru S, Viglianti GA (2010) PPARc and LXR Signaling Inhibit Dendritic Cell-Mediated HIV-1 Capture and trans-Infection. PLoS Pathog 6(7): e1000981. doi:10.1371/journal.ppat.1000981

Related Stories

Recommended for you

HIV exports viral protein in cellular packages

February 15, 2018
HIV may be able to affect cells it can't directly infect by packaging a key protein within the host's cellular mail and sending it out into the body, according to a new study out of a University of North Carolina Lineberger ...

Can gene therapy be harnessed to fight the AIDS virus?

February 13, 2018
For more than a decade, the strongest AIDS drugs could not fully control Matt Chappell's HIV infection. Now his body controls it by itself, and researchers are trying to perfect the gene editing that made this possible.

Big data methods applied to the fitness landscape of the HIV envelope protein

February 7, 2018
Despite significant advances in medicine, there is still no effective vaccine for the human immunodeficiency virus (HIV), although recent hope has emerged through the discovery of antibodies capable of neutralizing diverse ...

Scientists report big improvements in HIV vaccine production

February 5, 2018
Research on HIV over the past decade has led to many promising ideas for vaccines to prevent infection by the AIDS virus, but very few candidate vaccines have been tested in clinical trials. One reason for this is the technical ...

Microbiome research refines HIV risk for women

January 25, 2018
Drawing from data collected for years by AIDS researchers in six African nations, scientists have pinpointed seven bacterial species whose presence in high concentrations may significantly increase the risk of HIV infection ...

Researchers find latent HIV reservoirs inherently resistant to elimination by CD8+ T-cells

January 22, 2018
The latest "kick-and-kill" research to eliminate the HIV virus uncovered a potential obstacle in finding a cure. A recent study by researchers at the George Washington University (GW) found that latent HIV reservoirs show ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.