Scientists show Six3 gene essential for retinal development

September 20, 2010, St. Jude Children's Research Hospital

New research led by St. Jude Children's Research Hospital investigators adds to evidence that the Six3 gene functions like a doorman in the developing brain and visual system, safeguarding the future retina by keeping the region where the eye is forming free of a signaling protein capable of disrupting the process.

The findings underscore the pivotal role Six3 plays in the developing nervous system as a key regulator of the Wnt family of signaling proteins and expands on earlier work from the laboratory of Guillermo Oliver, Ph.D., member of the St. Jude Department of Genetics. Oliver is senior author of research being published in the September 20 advance online edition of the .

"Our work suggests that Six3 evolved as a direct regulator of different members of the critical ," Oliver said. The family of Wnt proteins influences the fate of different cell types by binding to receptors on the cell surface.

"A few years ago we determined that very early in development Six3 is required for repressing one member of the Wnt family, a gene called Wnt1, to allow proper development of the forebrain. With this new research, we show that a few hours later Six3 is called on again, this time to repress a different Wnt family member, Wnt8b, so formation of the can begin."

The retina is the multilayered structure lining the back of the eye. It includes light-sensing cells and the lens, both required for vision. Unlike some animals, humans cannot make new cells to replace those in the retina that are lost to age or illnesses like macular degeneration or glaucoma.

Oliver said realizing the potential of or other cell-based replacement therapies to correct vision or treat blindness requires a more detailed understanding of the genes and molecular mechanisms involved in normal retinal development.

In this study, investigators showed that when Six3 was switched off at a key point in mouse the retina did not form. The association between Six3 and the retina was further strengthened when researchers found that the retinal pigmented epithelium, a cell layer outside the retina that normally nourished the retina cells, was largely unaffected by the gene's absence.

The scientists went on to directly link the lack of a retina to the abnormal expansion of Wnt8b expression into a region where the forebrain normally develops. That region of the developing anterior brain is where cells undergo a process called specification, followed by differentiation to become the highly specialized cells of the retina and eye.

Further analysis showed that the Six3 protein binds directly to regulatory regions of Wnt8b. "Our results conclusively demonstrated that for retinal formation to begin, the embryonic forebrain must be Wnt8b free. So the first step in the process is for Six3 to bind to and repress Wnt8b so its expression remains restricted inside its normal boundaries," Oliver explained. "Our findings provide a molecular framework to the developmental program leading to retina differentiation. The work may also be relevant for devising novel strategies aimed at characterizing and eventually treating different abnormalities in eye formation.

Researchers are now working to understand the pathway activated when Six3 blocks Wnt8b. "We are focused on a very narrow window of time when specification takes place. We need to identify the critical genes that appear in that timeframe," Oliver said.

Related Stories

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.