Researchers see a 'picture' of threat in the brain: Work may lead to new model of neuroinflammation

May 3, 2011 by Earle Holland

A team of researchers is beginning to see exactly what the response to threats looks like in the brain at the cellular and molecular levels.

This new information, including the discovery that a model of social stress can increase inflammation among , should provide new insight into how the affects inflammatory and .

It may also provide new targets for drugs treatments in the continuing struggle to curtail depression and anxiety.

Scientists from Ohio State University's Institute of Behavioral Medicine Research reported their results in the latest issue of the .

John Sheridan, professor of oral biology, and Jonathan Godbout, an assistant professor of molecular virology, and , turned to colonies of mice to make their discoveries.

Groups of mice living together quickly adopt a hierarchy ranging from dominant to subordinate. This vaguely political system controls the interaction among the animals. Once these patterns had been established, the researchers then added an additional, highly aggressive mouse to the mix for a two-hour period each day to disrupt the .

With no place to retreat, the mice were forced into conflicts with the new aggressor. After as few as three episodes with the aggressor, the original mice showed distinct signs of what the researchers considered "anxiety-like behaviors." This kind of experiment creates a "social disruption" within the group of mice and is widely used to mimic psychological stress.

"These animals can't flee, so they have to stand and fight," Sheridan explained. "In doing so, they're repeatedly defeated, creating a condition called "learned helplessness," a condition closely linked to depression.

What Sheridan and Godbout saw was that the animals' anxiety continued for a long time after the termination of the stressful episodes of defeat. "For two weeks or more after we stopped the , we could still see this anxiety-like behavior," Sheridan said.

The real discoveries came when the researchers analyzed what was happening in the animals' brains and in their immune response.

"We found that in the stressed animals, a certain type of immune cell (myeloid progenitor cell, or MPC), produced in the bone marrow, entered the circulatory system and migrated to the ," explained Godbout.

These MPCs might normally relocate in this way to deal with an infection or an injury in the brain, but in this case, they moved solely because of the response to a social stressor, he said. The experiments showed that the number of these cells more than tripled in the brain following the stress.

Other immune cells called microglia, normally residing in the brain, also triggered an inflammatory response because of the stress. The researchers also noted that the stressor caused a particular activation pattern of neurons, or nerve cells, within the brain.

The response to also caused an increase in the amounts of some inflammatory cytokines in the brain, including interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-a) which are linked to inflammation. These cytokine responses correlated with an insensitivity of MPCs to glucocorticoids, hormones that normally inhibit inflammation in the body.

So the research team saw these and other cellular changes occurring in the brain following the stress, at the same time they were seeing the behavioral changes – the anxiety-like behavior.

The findings are evidence of a two-way communication that's existing between the body and the brain in times of stress, Sheridan said.

To test that apparent connection, they gave the mice injections of propranolol -- a so-called "beta-blocker" drug often used for cardiac conditions -- before they encountered the more aggressive mouse. In this case, the researchers saw no increase in IL-1 or TNF-a, no glucocorticoid insensitivity, and no long-lasting anxiety-like behavior in the test animals.

"If we treated the animal with a beta-blocker each night before we put the intruder in, it completely blocked the signal. The anxiety-like behavior never developed," Godbout said.

"What this basically argues is that we may now have a new target for individuals who have extended anxiety-like behavior," Sheridan said. "We may have a new target cell to think about in terms of new therapies.

"And since that cell (the MPCs traveling from the bone marrow) is coming from the periphery of the body, we might not need to resort to psychoactive drugs that can have adverse effects on the brain."

Proving that, however, will take more animal studies and subsequent large studies using humans before this approach could be used clinically, he said.

Related Stories

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.