New research reveals brain network connections

July 13, 2011, University of Notre Dame

Research conducted by Maria Ercsey-Ravasz and Zoltan Toroczkai of the University of Notre Dame's Interdisciplinary Center for Network Science and Applications (iCeNSA), along with the Department of Physics and a group of neuroanatomists in France, has revealed previously unknown information about the primate brain.

The researchers published an article in the journal showing that the brain is characterized by a highly consistent, weighted network among the functional areas of the cortex, which are responsible for such functions as vision, hearing, touch, movement control and complex associations. The study revealed that such cortical networks and their properties are reproducible from individual to individual.

Ercsey-Ravasz, a postdoctoral associate, and Toroczkai, professor of physics, analyzed 70 man-years' worth of data on macaque brains collected by a large group led by Henry Kennedy in Lyon, France. The Kennedy team injected ink tracers into a portion of the brain and scanned thin brain slices to track the movement of the chemical through the nerve cells' branches, called axons, to the soma of the cells. Kennedy enlisted iCeNSA for its expertise at analyzing networks, which has also been applied to fields as diverse as the spread of disease and the social networks. Their analysis identified the consistency of connectivity among the areas of the brain.

Ercsey-Ravasz, in a study of the data that will be included in a later paper, also has demonstrated that the number of connections is greatest between areas that are closest, and the number declines in a consistent pattern as distance increases. The regularity of the patterns from animal to animal suggests that the connections are necessary, and the fewer long-distance connections likely are control switches that coordinate or modulate information exchange amongst the .

The study is part of a broader investigation of and intelligence that has accelerated in recent years as researchers abandoned the once-promising analogy between computer circuitry and human intelligence, a project that stalled in the 1970s. "It turns out the brain is not just this beautiful circuitry you could just back-engineer," Toroczkai says. "It is an amazingly complex system, and this is why it is very hard to understand why it works."

The adult contains 100 billion neurons with branches that connect at more than 100 trillion points. A top-down approach called functional decomposition, identifying bundles within the brain, helps overcome the sheer data volume. The macaque brain has 83 such areas; the human brain more than 120. "What we find is a network of connections between the functional areas," Toroczkai says. "That's important because we now have more detailed information about how the brain is wired on a large-scale, functional level."

Toroczkai and Ercsey-Ravasz will continue research in the field with US and international collaborators, aimed at understanding how information received through the senses and converted to electric pulses is processed in the brain. "It looks like there is some sort of general algorithm that is being run in this network," he says. "The wiring is very strange. It is not something you would expect. It constitutes one of the major motivations for this study."

Related Stories

Recommended for you

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.