Mice stem cells guided into myelinating cells by the trillions

September 25, 2011, Case Western Reserve University

Scientists at Case Western Reserve University School of Medicine found a way to rapidly produce pure populations of cells that grow into the protective myelin coating on nerves in mice. Their process opens a door to research and potential treatments for multiple sclerosis, cerebral palsy and other demyelinating diseases afflicting millions of people worldwide.

The findings are published in the online issue of , Sunday, Sept. 25.

"The mouse that we utilized, which are pluripotent epiblast , can make any cell type in body," Paul Tesar, an assistant professor of genetics at Case Western Reserve and senior author of the study, explained. "So our goal was to devise precise methods to specifically turn them into pure populations of myelinating cells, called oligodendrocyte progenitor cells, or OPCs."

Their success holds promise for basic research and beyond.

"The ability of these methods to produce functional cells that restore myelin in diseased mice provides a solid framework for the ability to produce analogous for use in the clinic," said Robert H. Miller, vice dean for research at the school of medicine and an author of the paper.

Tesar worked with CWRU School of Medicine researchers Fadi J. Najm, Shreya Nayak, and Peter C. Scacheri, from the department of genetics; Anita Zaremba, Andrew V. Caprariello and Miller, from the department of neurosciences; and with Eric. C. Freundt, now at the University of Tampa.

Myelin protects and provides insulation needed for signals to pass along nerves intact. Loss of the coating results in damage to nerves and diminished signal-carrying capacity, which can be expressed outwardly in symptoms such as loss of coordination and cognitive function.

Scientists believe that manipulating a patient's own OPCs or transplanting OPCs could be a way to restore myelin.

And, they have long known that have the potential to differentiate into OPCs. But, efforts to push stem cells in that direction have resulted in a mix of cell types, unsuitable for studying the developmental process that produces myelin, or to be used in therapies.

Tesar and colleagues are now able to direct mouse stem cells into oligodendrocyte in just 10 days. The team's success relied upon guiding the cells through specific stages that match those that occur during normal embryonic development.

First, stem cells in a petri dish are treated with molecules to direct them to become the most primitive cells in the nervous system. These cells then organize into structures called neural rosettes reminiscent of the developing brain and spinal cord.

To produce OPCs, the neural rosettes are then treated with a defined set of signaling proteins previously known to be important for generation of OPCs in the developing spinal cord.

After this 10 day protocol, the researchers were able to maintain the OPCs in the lab for more than a month by growing them on a specific protein surface called laminin and adding growth factors associated with OPC development.

The OPCs were nearly homogenous and could be multiplied to obtain more than a trillion cells.

The OPCs were treated with thyroid hormone, which is key to regulating the transition of the OPCs to oligodendrocytes. The result was the OPCs stopped proliferating and turned into oligodendrocytes within four days.

Testing on nerves lacking myelin, both on the lab bench and in diseased mouse models, showed the OPCs derived from the process flourished into oligodendrocytes and restored normal myelin within days, demonstrating their potential use in therapeutic transplants.

Because they are able to produce considerable numbers of OPCs – a capability that up until now has been lacking - the researchers have created a platform for discovering modulators of oligodendrocyte differentiation and myelination. This may be useful for developing drugs to turn a patient's own cells into myelinating cells to counter disease.

Explore further: A new program for neural stem cells

Related Stories

A new program for neural stem cells

May 12, 2011
German researchers succeed in obtaining brain and spinal cord cells from stem cells of the peripheral nervous system.

Recommended for you

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

Receptor proteins that respond to nicotine may help fat cells burn energy

May 21, 2018
The same proteins that moderate nicotine dependence in the brain may be involved in regulating metabolism by acting directly on certain types of fat cells, new research from the University of Michigan Life Sciences Institute ...

Atomic-level study reveals why rare disorder causes sudden paralysis

May 21, 2018
A rare genetic disorder in which people are suddenly overcome with profound muscle weakness is caused by a hole in a membrane protein that allows sodium ions to leak across cell membranes, researchers at the University of ...

New era for blood transfusions through genome sequencing

May 18, 2018
Most people are familiar with A, B, AB and O blood types, but there are hundreds of additional blood group "antigens" on red blood cells—substances that can trigger the body's immune response—that differ from person to ...

Robots grow mini-organs from human stem cells

May 17, 2018
An automated system that uses robots has been designed to rapidly produce human mini-organs derived from stem cells. Researchers at the University of Washington School of Medicine in Seattle developed the new system.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Cave_Man
not rated yet Sep 26, 2011
This is a HUGE breakthrough if it can be used with human cells, anyone over 10 years old has mercury amalgam fillings in their mouths which release mercury vapor.

Mercury is extremely detrimental to the myelin sheath of neurons in your brain (explaining the high level of brain diseases and generally retarded behavior)

check out the smoking gun (tooth)
http://www.youtub...nQ-T7oiA

check out what mercury does to your brain
http://www.youtub...=related

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.