Scientists disarm HIV in step towards vaccine

September 19, 2011, Imperial College London

Researchers have found a way to prevent HIV from damaging the immune system, in a new lab-based study published in the journal Blood. The research, led by scientists at Imperial College London and Johns Hopkins University, could have important implications for the development of HIV vaccines.

HIV/AIDS is the third biggest cause of death in low income countries, killing around 1.8 million people a year worldwide. An estimated 2.6 million people became infected with HIV in 2009.

The research shows that HIV is unable to damage the immune system if cholesterol is removed from the virus's membrane. Usually, when a person becomes infected, the body's provides an immediate defence. However, some researchers believe that HIV causes the to overreact and that this weakens the immune system's next line of defence, known as the .

In the new study, the researchers removed cholesterol from the membrane surrounding the virus and found that this stopped HIV from triggering the innate immune response. This led to a stronger , orchestrated by called T cells. These results support the idea that HIV overstimulates the innate response and that this weakens the immune system.

Dr Adriano Boasso, first author of the study, from Imperial College London, said: "HIV is very sneaky. It evades the host's defences by triggering overblown responses that damage the immune system. It's like revving your car in first gear for too long. Eventually the engine blows out.

"This may be one reason why developing a vaccine has proven so difficult. Most vaccines prime the adaptive response to recognise the invader, but it's hard for this to work if the virus triggers other mechanisms that weaken the adaptive response."

HIV takes its membrane from the cell that it infects. This membrane contains cholesterol, which helps to keep it fluid. The fluidity of the membrane enables the virus to interact with particular types of cell. Cholesterol in the cell membrane is not connected to cholesterol in the blood, which is a risk factor for heart disease but is not linked to HIV.

Normally, a subset of immune cells called plasmacytoid dendritic cells (pDCs) recognise quickly and react by producing signalling molecules called interferons. These signals activate various processes which are initially helpful, but which damage the immune system if switched on for too long.

In collaboration with researchers at Johns Hopkins University, the University of Milan and Innsbruck University, Dr Boasso's group at Imperial have discovered that if cholesterol is removed from HIV's envelope, it can no longer activate pDCs. As a consequence, T cells, which orchestrate the adaptive response, can fight the virus more effectively.

The researchers removed cholesterol using varying concentrations of beta-cyclodextrin (bCD), a derivative of starch that binds . Using high levels of bCD they produced a virus with a large hole in its envelope. This permeabilised virus was not infectious and could not activate pDCs, but was still recognised by . Dr Boasso and his colleagues are now looking to investigate whether this inactivated virus could be developed into a vaccine.

"It's like an army that has lost its weapons but still has flags, so another army can recognise it and attack it," he said.

More information: A. Boasso et al. 'Over-activation of plasmacytoid dendritic cell inhibits anti-viral T cell responses: a model for HIV immunopathogenesis.' Blood, 19 September 2011.

Related Stories

Recommended for you

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

Researchers find clues to AIDS resistance in sooty mangabey genome

January 3, 2018
Peaceful co-existence, rather than war: that's how sooty mangabeys, a monkey species found in West Africa, handle infection by SIV, a relative of HIV, and avoid developing AIDS-like disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.