Scientists turns liver cells directly into neurons with new technique

October 7, 2011 By Krista Conger, Stanford University Medical Center

(Medical Xpress) -- Fully mature liver cells from laboratory mice have been transformed directly into functional neurons by researchers at the Stanford University School of Medicine. The switch was accomplished with the introduction of just three genes and did not require the cells to first enter a pluripotent state. It is the first time that cells have been shown to leapfrog from one fundamentally different tissue type to another.

The accomplishment extends previous research by the same group, which showed in 2009 that it is possible to directly transform , or , into .

“These liver cells unambiguously cross tissue-type boundaries to become fully functional neural cells,” said Marius Wernig, MD, PhD assistant professor of pathology and a member of Stanford’s Institute for Stem Cell Biology and Regenerative Medicine. “Even more surprising, these cells also simultaneously silence their liver-gene expression profile. They are not hybrids; they are completely switching their identities.”

The cells make the change without first becoming a pluripotent type of stem cell — a step long thought to be required for cells to acquire new identities.

Wernig is the senior author of the research, published online Sept. 29 in Cell Stem Cell. Postdoctoral scholar Samuele Marro, PhD, is the first author of the study.

The researchers used a technique developed by Stanford bioengineer Stephen Quake, PhD, to analyze the gene expression profiles of individual hepatocytes (liver cells) and fibroblasts to show that both types of transformed cells not only begin looking and acting like true neurons, they also decisively shut down nearly all gene expression associated with their former, very different identities.

“This is fascinating,” said Wernig. “We can imagine ways that the three introduced factors could stimulate neural gene expression, but how do they also down-regulate two completely unrelated donor networks — those of skin and liver cells?”

Understanding how this down-regulation works will help scientists and clinicians determine whether these so-called transdifferentiated cells can be used to learn more about diseases or even be safely used in human therapy. It would not be good, for example, if newly derived neurons began to again express skin or liver proteins. It also may help researchers understand the process of development, during which cells commit to certain fates while also turning off other potential pathways.

Wernig and Marro began investigating whether hepatocytes could transform into neurons because the fibroblasts they first transformed into neurons in 2010 are a notoriously messy groups of cells. Fibroblasts can be found in almost any organ in the body and contain mixtures of cell types. This made it extremely difficult to identify a cell-of-origin for the resulting neurons and to figure out exactly how big of a developmental leap the cells were making.

In contrast, hepatocytes are fairly homogenous and well-defined. Developmentally speaking, they are also worlds away from neurons: Hepatocytes arise from one of three classes of embryonic tissue called the endoderm; neurons from the ectoderm. The remaining tissue, the mesoderm, is, for the most part, sandwiched between the two. To put it simply: Your innards mostly arise from endoderm, your nervous system and the outer layer of your skin from ectoderm, and your connective tissue and muscles from mesoderm. Transforming endodermal cells into ectodermal cells is a testament to the power of the transdifferentiation technique.

To accomplish the transformation of the hepatocytes, the researchers used a virus to introduce the same three that they used for the fibroblasts: Brn2, Ascl1 and Myt1l. As with the fibroblasts, the hepatocytes began to exhibit neuronal characteristics within two weeks, and express neuronal genes within three weeks. Simultaneously, the cells began to suppress the expression of liver-specific genes.

Marro and Wernig used a sophisticated cell-labeling technique to confirm that the new neurons had indeed arisen from the former , and Fluidigm dynamic polyermerase chain reaction assays to analyze patterns of individual neuronal . They found that even “true” neurons express low levels of liver genes in the form of transcriptional noise. However, the newly differentiated neurons did express marginally higher levels of the same genes.

“Although the donor gene program is dramatically shut down, there are some remnants of their former life, like a kind of a memory,” said Wernig. “But the vast majority of expressed genes demonstrate a clear dominance of the neuronal transcription program.” Furthermore, the fact that the newly derived neurons generate electrical signals and form junctions with other neurons, and that they exhibit no residual liver function, indicates that this memory has no functional relevance, according to Wernig.

Explore further: Creating neurons directly from skin cells of humans

Related Stories

Creating neurons directly from skin cells of humans

May 27, 2011
The New York Stem Cell Foundation (NYSCF) – a non-profit organization dedicated to advancing cures for major diseases through stem cell research – today applauded the announcement by Stanford University scientists, ...

The beginnings of the brain

May 13, 2011
All of the tissues and organs of the body arise from one of three embryonic precursors: the ectoderm, mesoderm and endoderm. The ectoderm contributes to several tissues, including the nervous system and the skin, but some ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.