Signaling to chromatin

January 3, 2012, Friedrich Miescher Institute for Biomedical Research
Signaling to chromatin

(Medical Xpress) -- Scientists from the Friedrich Miescher Institute for Biomedical Research (FMI) in collaboration with their colleagues from the Department of Biosystems Science and Engineering of the ETH Zurich, describe how the signaling molecule JNK directly modifies histones to alter gene transcription. As JNK acts in a signaling pathway that is impaired in every third form of cancer, the results published in Nature Genetics open up a new pathway for kinase regulated gene expression and potential therapeutic intervention.

Signaling cascades take on the important task of communicating changes in the surroundings of the cell and initiating the appropriate responses. Cells perceive the changed environment through on the surface that activate clearly defined signaling pathways. In the cell, these signaling cascades may diverge and activate a mesh of proteins usually through or de-phosphorylation. However, at the end of these cascades stands a transcription factor that adapts to the changed circumstances. Critical for the functioning of the is the accessibility of the DNA, which is controlled by epigenetic processes. Until recently these two domains have been clearly separated. There had been no evidence that signaling cascades also control the accessibility of the DNA. A recent publication from the laboratory of Dirk Schübeler, group leader at the Friedrich Miescher Institute for Biomedical Research and Professor at the University of Basel, proves this clear separation wrong.

In a publication in the current issue of Dirk Schübeler and his collaborators at the Department of Biosystems Science and Engineering (DBSSE) at the ETH in Basel, could show that one of the most abundant signaling molecules called JNK directly interferes with histones, the proteins that coil or de-coil the DNA.

In a genome wide analysis, they could show that JNK binds directly to a large number of promoters independent of the transcription factor AP-1, which is usually activated by JNK. The number of promoters that JNK binds to even increases as the cells differentiate. What is more, they could show that JNK directly phosphorylates Serine 10 at the tail of histone H3, a mark that is associated with relaxed chromatin and an active transcription state in non-dividing cells. Inhibition of JNK signaling reduced this histone phosphorylation and expression of JNK target genes.

"Signaling molecules interfering directly with chromatin are a very new concept," said Vijay Tiwari, first author of the publication and postdoc in Schübeler's lab. "It represents a new way how intracellular signaling molecules can influence and thereby cell fate."

The findings of the FMI scientists are also interesting in a more applied way. The signaling cascade in which JNK acts-the MAP kinase pathway-is one of the most important regulators of proliferation, differentiation and even cell death. It is often disrupted in diseases; almost a third of all cancers show defects in this pathway. "Our findings open up the field and expand the number of targets for a in these diseases," comments Tiwari, who will continue this research topic in his own laboratory that he will establish at the Institute of Molecular Biology (IMB) in Mainz, Germany.

Explore further: Controlling patterns of DNA methylation

More information: Tiwari VK, Stadler MB, Wirbelauer C, Paro R, Schübeler D, Beisel C, (2011) A chromatin-modifying function of JNK during stem cell differentiation, Nat Genet. 44(1):94-100. www.nature.com/ng/journal/v44/n1/full/ng.1036.html

Related Stories

Controlling patterns of DNA methylation

October 28, 2011
A study performed by scientists in Dirk Schübeler's team at the Friedrich Miescher Institute for Biomedical Research in Basel identifies DNA sequences that autonomously determine DNA methylation patterns. Genomic patterns ...

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.