GABA signaling prunes back copious 'provisional' synapses during neural circuit assembly

January 3, 2012, Cold Spring Harbor Laboratory

Quite early in its development, the mammalian brain has all the raw materials on hand to forge complex neural networks. But forming the connections that make these intricate networks so exquisitely functional is a process that occurs one synapse at a time. An important question for neuroscience has been: how exactly do stable synapses form? How do nerve cells of particular types know which of their cortical neighbors to "synapse" with, and which to leave out of their emerging networks?

Neuroscientist Z. Josh Huang, a professor at Cold Spring Harbor Laboratory, and his laboratory team spearheaded by graduate student Xiaoyun We tomorrow publish a finding in the that Huang says surprised them, even after years of work on this problem.

In emerging networks being established by GABA – inhibitory brain cells named for the neurotransmitting chemical, gamma aminobutyric acid, that they release – Huang's team found strong evidence that the "default state" is for the cell to make tentative connections promiscuously, with almost every available partner. That much they had anticipated.

The unexpected observation was that GABA proved not to be involved in the initial formation of these tentative or "test" synapses, but rather in the essential process of pruning them back, later, after they had been formed. The net effect of provisional synapse formation and rapid subsequent pruning, Huang says, is "a bit like speed dating."

Huang explains that there are two known mechanisms at work in synapse formation. One is genetic, and involves the recruitment of highly specific neural cell adhesion molecules to the site of a tentative synaptic connection. These adhesion molecules, in lock-and-key fashion, form a physical but reversible glue-like bond between, say, a tentative synaptic projection from one GABA cell's axon and a receiving structure located across a tiny space on a neighboring cell body axon or dendritic filament emanating from another nerve cell. Last year, Huang's team became the first to observe how this process is regulated in living cortical circuits.

In their newly published research, they demonstrate in living basket cell interneurons – an important and prevalent subtype of GABA neuron – that a total blockade of GABA synthesis has no impact on the appearance of the many tentative . "This state of preliminary contact appears to be the default state in these neurons," Huang says.

"GABA turns out to be a kind of discriminatory mechanism. As in speed-dating, in the end you want to form connections with the right partner. And you don't want to spend too much time or too much of your available resources checking each possibility out."

Interestingly, virtually all possibilities for matches -- in this case in terms of physical availability, i.e., proximity -- are seriously considered. GABA's surprising role is to serve as a trigger of the mechanism that swiftly eliminates incompatible contacts. Incompatibility in this context can mean biochemical or functional incongruity.

What is not yet understood, says Huang, is the nature of the pruning mechanism that GABA triggers. "There is some other signaling mechanism 'downstream,' so to speak, of GABA's triggering that performs the pruning. One possibility is that it is linked to GABA receptors. But we do not yet know."

Elucidating that detail is the next scientific objective of the team.

Explore further: Team creates genetic 'GPS' system to comprehensively locate and track inhibitory nerve cells

More information: "GABA Signaling Promotes Synapse Elimination and Axon Pruning in Developing Cortical Inhibitory Interneurons" appears January 4, 2012 in the Journal of Neuroscience. The authors are: Xiaoyun Wu, Yu Fu, Graham Knott, Jiangteng Lu, Graziella Di Cristo and Z. Josh Huang. The paper will be available online January 4 at DOI:10.1523/JNEUROSCI.3189-11.2012

Related Stories

Team creates genetic 'GPS' system to comprehensively locate and track inhibitory nerve cells

September 21, 2011
A team of neuroscientists at Cold Spring Harbor Laboratory (CSHL) has succeeded in creating what amounts to a GPS system for locating and tracking a vital class of brain cells that until now has eluded comprehensive identification, ...

Researchers uncover steps in synapse building, pruning

November 16, 2011
Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant ...

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ED__269_
1 / 5 (1) Jan 03, 2012
I suspect the nature of pruning (GABA) is path specific, with dependence on distance/time & signal frequency. I suspect those parameters govern the shape and distribution of the potential (as a function of interaction(speed dates)) that eventually lead to path definitions of optimization (which I suspect is heat minimizing by nature).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.