Revising the 'textbook' on liver metabolism offers new targets for diabetes drugs

February 21, 2012, University of Pennsylvania School of Medicine

A team led by researchers from the Institute for Diabetes, Obesity and Metabolism (IDOM) at the Perelman School of Medicine, University of Pennsylvania, has overturned a "textbook" view of what the body does after a meal. The study appears online this week in Nature Medicine, in advance of print publication.

Normally after a meal, shuts off in the liver, but – when the hormone becomes less effective at lowering blood sugars – can become a problem.

The Penn group showed that mice without the genes Akt1 and Akt2 in their livers were insulin resistant and defective in their response to feeding with respect to levels. In these mice, blood sugar levels remained high after a meal. When Akt is not present, another gene, Foxo, is on all the time, and the liver "thinks" the body is fasting. In response, glucose production stays on to keep cells supplied in energy-rich molecules.

But then, says senior author Morris Birnbaum, MD, PhD, professor of and IDOM Associate Director, "In further experiments, we expected that Akt and Foxo knockout mice – when we gave them a meal – to be locked into a fed state metabolically if both proteins were gone," says Birnbaum. "But, the liver responded normally after a meal, so we asked what is regulating the liver and glucose production in the absence of both the Akt and Foxo proteins?"

These results are inconsistent with the model of liver metabolism that the Birnbaum lab proposed a decade ago, in which the Akt protein is absolutely required for proper insulin signaling. The team surmised that there must be a backup pathway in the liver that governs glucose .

Back Then

Ten years ago, a study in Science by Birnbaum's research group described that the inactivation of the protein Akt2 led to in mice. The result was that insulin was not working in the fat cells and liver of these mice,

proving that Akt is required for insulin to function properly. From then on, an accepted pathway for insulin control of blood sugar was that the Akt protein turned off Foxo1, a protein that governs genes that make glucose. Specifically, when Foxo1 is on, it drives glucose production. After a meal, Akt modifies Foxo1 so that it reduces Foxo1's activity. This turns off glucose production, so blood sugar levels stay within a safe range after eating.

"When we started our present experiments to see how this pathway might apply to other aspects of metabolic regulation, this scenario is what we expected to see, based on the literature," notes Birnbaum.

Backup Systems

Why would animals need a seemingly redundant pathway? The scenario that the researchers favor is that insulin is working on other tissues' receptors and also communicates with the liver before and after a meal. The candidate organ is the brain via the nervous system. Studies by other labs have shown there are insulin receptors in the brain and suggested such a pathway may exist, though many scientists have been hesitant to accept this notion due to conflicting data, says Birnbaum.

However, the new results from the Birnbaum lab provide an explanation of why it has been difficult to see the backup pathway: When insulin signaling in the liver is disrupted, the organ loses its ability to respond to outside signals.

The team surmises that the normal state for the body is that Foxo is off most of the time, but during a diabetic state, Foxo is inappropriately activated. And when Foxo is on, which they propose is not the normal state, the liver is prevented from responding to the brain's signal to stop or start glucose production. The team is now working on testing this hypothesis.

In the short run, these results suggest several other pathways to target in the hope to bypass the block in insulin action that occurs in Type 2 diabetes. First, one could try to mimic the signal external to the liver. Second, it might be possible to develop therapies that allow the to respond to signals from such other organs as the brain, even though usually during diabetes the active Foxo1 prevents this.

Explore further: Penn Study Explains Paradox of Insulin Resistance Genetics

Related Stories

Penn Study Explains Paradox of Insulin Resistance Genetics

October 25, 2011
(Medical Xpress) -- Obesity and insulin resistance are almost inevitably associated with increases in lipid accumulation in the liver, a serious disease that can deteriorate to hepatitis and liver failure.  A real paradox ...

Team identifies key protein causing excess liver production of glucose in diabetes

September 28, 2011
Researchers at the John G. Rangos Sr. Research Center at Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine have identified a powerful molecular pathway that regulates the liver's ...

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

Big strides made in diabetes care

January 5, 2018
(HealthDay)—This past year was a busy, productive one for diabetes research and care.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.