Once considered mainly 'brain glue,' astrocytes' power revealed

April 4, 2012, University of Rochester Medical Center

A type of cell plentiful in the brain, long considered mainly the stuff that holds the brain together and oft-overlooked by scientists more interested in flashier cells known as neurons, wields more power in the brain than has been realized, according to new research published in Science Signaling.

Neuroscientists at the University of Rochester Medical Center report that are crucial for creating the proper environment for our brains to work. The team found that the cells play a key role in reducing or stopping the that are considered , playing an active role in determining when cells called fire and when they don't.

That is a big step forward from what scientists have long considered the role of astrocytes – to nurture neurons and keep them healthy.

"Astrocytes have long been called housekeeping cells – tending to neurons, nurturing them, and cleaning up after them," said Maiken Nedergaard, M.D., D.M.Sc., professor of Neurosurgery and leader of the study. "It turns out that they can influence the actions of neurons in ways that have not been realized."

Proper brain function relies on billions of electrical signals – tiny molecular explosions, really – happening remarkably in sync. Recalling the face of a loved one, swinging a baseball bat, walking down the street – all those actions rely on electrical signals passed instantly along our nerves like a molecular hot potato from one brain cell to another.

For that to happen, the molecular brew of chemicals like sodium, calcium and potassium that brain cells reside in must be just right – and astrocytes help to maintain that balanced environment. For instance, when a neuron sends an impulse, or fires, levels of potassium surrounding the cell jump dramatically, and those levels must come down immediately for the brain to work properly. Scientists have long known that that's a job for astrocytes – sopping up excess potassium, ending the nerve pulse, and restoring the cells so they can fire again immediately.

In the paper in Science Signaling, Nedergaard's team discovered an expanded role for astrocytes. The team learned that in addition to simply absorbing excess potassium, astrocytes themselves can cause potassium levels around the neuron to drop, putting neuronal signaling to a stop.

"Far from only playing a passive role, astrocytes can initiate the uptake of potassium in a way that affects neuronal activity," said Nedergaard. "It's a simple, yet powerful mechanism for astrocytes to rapidly modulate neuronal activity."

Nedergaard has investigated the secret lives of astrocytes for more than two decades. She has shown how the cells communicate using calcium to signal. Nearly 20 years ago in a paper in Science, she pioneered the idea that glial cells like astrocytes communicate with neurons and affect them. Since then, has been a lot of speculation by other scientists that chemicals call gliotransmitters, such as glutamate and ATP, are key to this process.

In contrast, in the latest research Nedergaard's team found that another signaling system involving potassium is at work. By sucking up potassium, astrocytes quell the firing of neurons, increasing what scientists call "synaptic fidelity." Important brain signals are crisper and clearer because there is less unwanted activity or "chatter" among neurons that should not be firing. Such errant neuronal activity is linked to a plethora of disorders, including epilepsy, schizophrenia, and attention-deficit disorder.

"This gives us a new target for a disease like epilepsy, where signaling among brain is not as controlled as it should be," said Nedergaard, whose team is based in the Division of Glia Disease and Therapeutics of the Center for Translational Neuromedicine of the Department of Neurosurgery.

The first authors of the paper are Fushun Wang, Ph.D., research assistant professor of Neurosurgery; and graduate student Nathan Anthony Smith. They did much of the work by using a sophisticated laser-based system to monitor the activity of astrocytes in the living brain of rats and mice. The work by Smith, a graduate student in the University's neuroscience program, was supported by a Kirschstein National Research Service Award from the National Institute of Neurological Disorders and Stroke (NINDS).

Other authors from Rochester include Takumi Fujita, Ph.D., post-doctoral associate; Takahiro Takano, Ph.D., assistant professor; Qiwu Xu, technical associate; and Lane Bekar, Ph.D., formerly research assistant professor, now at the University of Saskatchewan. Also contributing were Akemichi Baba of Hyogo University of Health Sciences in Japan, and Toshio Matsuda of Osaka University in Japan.

Nedergaard notes that the complexity and size of our astrocytes is one of few characteristics that differentiate our brains from rodents. Our astrocytes are bigger, faster, and much more complex in both structure and function. She has found that astrocytes contribute to conditions like stroke, Alzheimer's, epilepsy, and spinal cord injury.

"Astrocytes are integral to the most sophisticated processes," she added.

The latest paper caps a remarkable run for the Nedergaard group. In two months the team has published a paper on adenosine in the Proceedings of the National Academy of Sciences, a paper on spinal cord injury in the Journal of Neuroscience, and two papers in Science Signaling on communication between neurons and astrocytes.

Explore further: Control by the matrix: Researchers decipher the role of proteins in the cell environment

Related Stories

Control by the matrix: Researchers decipher the role of proteins in the cell environment

December 12, 2011
How astrocytes, certain cells of the nervous system, are generated was largely unknown up to now. Bochum's researchers have now investigated what influence the cell environment, known as the extracellular matrix, has on this ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.