'REST' is crucial for the timing of brain development

March 2, 2012, University of Copenhagen

Researchers have just shown that the molecule REST acts as an adapter in stem cells, and hope that future studies of REST will contribute to the development of new types of treatments for diseases such as cancer.

Upon fertilisation, a single cell is formed when egg and sperm fuse. Our entire body, with more than 200 specialised cell types and billions of cells are formed from this single cell. It is a scientific mystery how the early stem cells know what cell type to become, but a precise timing of the process is crucial for correct and function of our body. Researchers across the world chase knowledge about our stem cells, as this knowledge holds great promises for development of treatment against several major diseases. Researchers from BRIC, University of Copenhagen, have just shown that the molecule REST acts as an adapter in stem cells, coupling molecular on-off switches with neural genes and thereby times .

"REST secure neuronal genes to be turned off in our stem cells until the correct time point in fetal life, where the molecule is lost and development of the nervous system begins. Our results are very important for the understanding of how genes are turned on and off during fetal development, but also relates to disease development such as cancer. Hopefully, our future studies of REST will contribute to the development of new types of treatments," says Associate Professor and Group Leader at BRIC, Klaus Hansen.

Genetic switches

All our cells contain the same DNA, yet they can develop into with different shapes and functions. This ability is due to only selective genes being turned on in for example neuronal cells and other genes in and . Postdoc Nikolaj Dietrich from Klaus Hansen's laboratory has been the main driver of the investigation:

"Our results show that REST act as an adapter for the protein complexes called PRCs, connecting these complexes to neuronal genes. The PRCs are turning off genes and therefore REST and the PRCs act in concert to shutdown neuronal genes. A similar mechanism has previously been described in fruit flies, but until now, no one has been able to identify such adapter-molecules in humans or other mammals. This has led to various biological hypotheses, but now we are able to show that this genetic mechanism has been conserved trough out evolution," says Nikolaj Dietrich.

Brain damage and brain tumors

REST and PRC are attached to neuronal genes in the early fetal stem cells, keeping neuronal genes turned off. During , REST disappears in cells that are determined to develop into , whereas the molecule is preserved in other cell types. REST is also preserved in special neuronal stem cells, ensuring that these cells maintain their stem cell properties. This is crucial if we experience damage to our nervous system later in life, as only the neuronal can repair the damage by giving rise to new neurons and thereby secure vital body functions. However, REST also appears to be associated with a higher risk of cancer:

"An increased amount of REST has been found in the brain tumor form called neuroblastoma. Some of our results indicate that REST may be involved in cancer, as the molecule can turn off some growth-inhibitory and cancer-protective genes called tumor suppressors. This possible action of REST is the focus of ongoing studies," says Nikolaj Dietrich.

Explore further: The TET1 enzyme steers us through fetal development and fights cancer

More information: The results have just been published in the international scientific journal PLoS Genetics: REST-Mediated Recruitment of Polycomb Repressor Complexes in Mammalian Cells, Dietrich et al. March 1, 2012.

Related Stories

The TET1 enzyme steers us through fetal development and fights cancer

April 13, 2011
To ensure normal fetal development and prevent disease, it is crucial that certain genes are on or off in the right time intervals. Researchers in Professor Kristian Helin's group at BRIC, University of Copenhagen, have now ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.