Bacteria subverts immune response to aid infection

April 26, 2012

Listeria, one of the most deadly causes of bacterial food poisoning, subverts a normally protective immune response to spread its infection more effectively, according to new research at National Jewish Health. Immunologists Laurel Lenz, PhD, Peter Henson, PhD, and their colleagues report online April 26, 2012, in the journal Immunity that production of nitric oxide (NO) by activated macrophages, which is normally thought of as an infection-fighting response, actually helps Listeria monocytogenes to more efficiently disseminate between infected and neighboring uninfected cells.

"In the course of evolution, and their hosts engage in an ongoing arms race, responding to and countering each other's tactics to gain the upper hand," said Dr. Lenz. "In this case, Listeria has learned to evade a response that is normally protective and to do so in a way that substantially increases the spread of infection. Several other pathogens, including Rickettsia, Burkholderia, Vaccinia and HIV, spread throughout the host in a similar manner and may use similar strategies."

When Listeria or other pathogens first enter the body, on recognize general features of the pathogen and sound an early alarm that activates the . When activated, and other innate can more readily prevent free-floating pathogens from surviving upon entering cells. However, these activated cells also release of nitric oxide (NO), an important signaling molecule that triggers several defense mechanisms.

Dr. Lenz and his colleagues found that production of NO by activated cells helped to increase Listeria spread directly from cell to cell and replicate in its host. When Listeria spreads directly from cell to cell, it produces small buds on the surface of an infected cell. Neighboring cells that touch the infected cell absorb the buds containing the Listeria. Thus, the bacteria are transferred without ever entering the extracellular environment. The absorbed Listeria are initially contained within small bubbles, known as a vacuoles or phagosomes. Normally when a white blood cell absorbs a particle or organism, these phagosomes are targeted by a sort of cellular Death Star that fuses with them and destroys their contents. NO, however, delays the attack of these Death Stars, or lysosomes. This delay gives Listeria more time to escape the phagosome into the cell interior before it can be destroyed by the lysosomes.

"Delaying lysosome fusion with phagosomes tips the scale in favor of Listeria, allowing this pathogen to more effectively infect cells through cell-to-cell spread and thus to multiply in its host," said Dr. Lenz.

Explore further: Trudeau Institute reports new approach to treating Listeria infections

Related Stories

Trudeau Institute reports new approach to treating Listeria infections

October 17, 2011
Research underway at the Trudeau Institute could lead to new treatments for people sickened by Listeria and other sepsis-causing bacteria. Dr. Stephen Smiley's laboratory has published a study in the scientific journal Infection ...

Bacteria enter via mucus-making gut cells

October 3, 2011
Cells making slippery mucus provide a sticking point for disease-causing bacteria in the gut, according to a study published on October 3 in the Journal of Experimental Medicine.

Recommended for you

Gene transcription in virus-specific CD8 T cells differentiates chronic from resolving HCV

October 17, 2017
Massachusetts General Hospital (MGH) investigators have identified differences in gene transcription within key immune cells that may distinguish those individuals infected with the hepatitis C virus (HCV) who develop chronic ...

How cytoplasmic DNA triggers inflammation in human cells

October 17, 2017
A team led by LMU's Veit Hornung has elucidated the mechanism by which human cells induce inflammation upon detection of cytoplasmic DNA. Notably, the signal network involved differs from that used in the same context in ...

Early trials show potential for treating hay fever with grass protein fragments

October 13, 2017
Protein fragments taken from grass can help protect hay fever patients from allergic reactions to pollen grains.

Researchers find mechanism for precise targeting of the immune response

October 13, 2017
The immune system checks the health of cells by examining a kind of molecular passport. Sometimes, cells present the wrong passport, which can lead to autoimmune diseases, chronic inflammations or cancer. Scientists of the ...

Enzyme behind immune cell response revealed

October 12, 2017
Monash University researchers have revealed the role played by an enzyme that is pivotal to the process of clearing infection in the body. Moreover, they suggest that the enzyme may be a potential target for drug development ...

Calcium lets T cells use sugar to multiply and fight infection

October 11, 2017
A calcium signal controls whether immune cells can use the nutrients needed to fuel their multiplication into a cellular army designed to fight invading viruses.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.