Study may offer clues to reverse cognitive deficits in humans

April 26, 2012, Baylor University

The ability to navigate using spatial cues was impaired in mice whose brains were minus a channel that delivers potassium — a finding that may have implications for humans with damage to the hippocampus, a brain structure critical to memory and learning, according to a Baylor University researcher.

Mice missing the channel also showed diminished learning ability in an experiment dealing with fear conditioning, said Joaquin Lugo, Ph.D., the lead author in the study and an assistant professor of psychology and neuroscience in Baylor's College of Arts & Sciences.

"By targeting chemical pathways that alter those channels, we may eventually be able to apply the findings to humans and reverse some of the cognitive deficits in people with epilepsy and other neurological disorders," Lugo said.

The research was done in Baylor College of Medicine Intellectual and Developmental Disabilities Research Center Mouse Neurobehavior Core in Houston during Lugo's time as a researcher there.

The findings are published online in the journal Learning & Memory.

The channel, called Kv4.2, delivers potassium, which aids neuron function in the brain's hippocampus. The forms memory for long-term storage in the . Potassium also helps to regulate excitability.

Individuals who have epilepsy sometimes exhibit altered or missing Kv.4.2 channels or similar types of channels.

In the experiment investigating navigation, "knockout" mice — those without the channel — were tested in a water maze four feet in diameter and 12 inches deep, with eight trials daily — each lasting about a minute — over four days, he said. Their performance was compared with that of normal mice.

Both groups responded to visual cues — colored symbols — in learning their way around the maze, but the knockout mice did not respond as well as the normal mice in terms of spatial cues — hidden platforms in the water.

"When the mice don't have this channel, it hurts their ability to learn," Lugo said.

In a separate experiment examining fear conditioning, both and normal mice were placed in a cage, and researchers sounded a tone before giving the mice a mild electric shock. In repeated trials, both groups began to freeze upon hearing the tone as they anticipated a shock. But the normal mice also reacted to the context — being placed in the cage — while the mice who did not have the Kv4.2 channel reacted only to the tone.

Explore further: Researchers induce PTSD symptoms in mice

More information: http://learnmem.cshlp.org/content/19/5/182.full

Related Stories

Researchers induce PTSD symptoms in mice

February 24, 2012
(Medical Xpress) -- Post traumatic stress disorder (PTSD) is a condition in which people find themselves experiencing intense fear following a traumatic experience due to unrelated circumstances. It’s quite common in ...

Researchers pinpoint genetic connection to traumatic experience

February 1, 2012
Rutgers scientists have uncovered genetic clues as to why some mice no longer in danger are still fearful while others are resilient to traumatic experiences – knowledge that could help those suffering with crippling ...

Scientists reveal molecular sculptor of memories

September 26, 2011
Researchers working with adult mice have discovered that learning and memory were profoundly affected when they altered the amounts of a certain protein in specific parts of the mammals’ brains.

Cerebellar neurons needed to navigate in the dark

October 21, 2011
(Medical Xpress) -- A new study by scientists in France has revealed that the cerebellum region of the brain plays an important role in the ability to navigate when visual cues are absent, and is the first study to show this ...

Recommended for you

Intensive behavior therapy no better than conventional support in treating teenagers with antisocial behavior

January 19, 2018
Research led by UCL has found that intensive and costly multisystemic therapy is no better than conventional therapy in treating teenagers with moderate to severe antisocial behaviour.

Babies' babbling betters brains, language

January 18, 2018
Babies are adept at getting what they need - including an education. New research shows that babies organize mothers' verbal responses, which promotes more effective language instruction, and infant babbling is the key.

College branding makes beer more salient to underage students

January 18, 2018
In recent years, major beer companies have tried to capitalize on the salience of students' university affiliations, unveiling marketing campaigns and products—such as "fan cans," store displays, and billboard ads—that ...

Inherited IQ can increase in early childhood

January 18, 2018
When it comes to intelligence, environment and education matter – more than we think.

Modulating molecules: Study shows oxytocin helps the brain to modulate social signals

January 17, 2018
Between sights, sounds, smells and other senses, the brain is flooded with stimuli on a moment-to-moment basis. How can it sort through the flood of information to decide what is important and what can be relegated to the ...

Baby brains help infants figure it out before they try it out

January 17, 2018
Babies often amaze their parents when they seemingly learn new skills overnight—how to walk, for example. But their brains were probably prepping for those tasks long before their first steps occurred, according to researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.