Researchers map damaged connections in Phineas Gage's brain

May 17, 2012
Damage to Gage's brain (Image copyright: John Darrell Van Horn and the UCLA Laboratory of Neuro Imaging, 2012.)

(Medical Xpress) -- Poor Phineas Gage. In 1848, the supervisor for the Rutland and Burlington Railroad in Vermont was using a 13-pound, 3-foot-7-inch rod to pack blasting powder into a rock when he triggered an explosion that drove the rod through his left cheek and out of the top of his head. As reported at the time, the rod was later found, "smeared with blood and brains."

Miraculously, Gage lived, becoming the most famous case in the history of neuroscience — not only because he survived a horrific accident that led to the destruction of much of his left frontal lobe but also because of the injury's reported effects on his personality and behavior, which were said to be profound. Gage went from being an affable 25-year-old to one that was fitful, irreverent and profane. His friends and acquaintances said he was "no longer Gage."

Over the years, various scientists have studied and argued about the exact location and degree of damage to Gage's cerebral cortex and the impact it had on his personality. Now, for the first time, researchers at UCLA, using brain-imaging data that was lost to science for a decade, have broadened the examination of Gage to look at the damage to the white matter "pathways" that connect various regions of the brain.

Reporting in the May 16 issue of the journal , Jack Van Horn, a UCLA assistant professor of neurology, and colleagues note that while approximately 4 percent of the cerebral cortex was intersected by the rod's passage, more than 10 percent of Gage's total white matter was damaged. The passage of the tamping iron caused widespread damage to the white matter connections throughout Gage's brain, which likely was a major contributor to the behavioral changes he experienced.

Because white matter and its myelin sheath — the fatty coating around the nerve fibers that form the basic wiring of the brain — connect the billions of neurons that allow us to reason and remember, the research not only adds to the lore of Phineas Gage but may eventually lead to a better understanding of multiple brain disorders that are caused in part by similar damage to these connections.

"What we found was a significant loss of white matter connecting the left frontal regions and the rest of the brain," said Van Horn, who is a member of UCLA's Laboratory of Neuro Imaging (LONI). "We suggest that the disruption of the brain's 'network' considerably compromised it. This may have had an even greater impact on Mr. Gage than the damage to the cortex alone in terms of his purported personality change."

LONI is part of an ambitious joint effort with Massachusetts General Hospital and the National Institutes of Health to document the trillions of microscopic links between every one of the brain's 100 billion neurons — the so-called "connectome." And because mapping the brain's physical wiring eventually will lead to answers about what causes mental conditions that may be linked to the breakdown of these connections, it was appropriate, as well as historically interesting, to take a new look at the damage to Gage's brain.

Since Gage's 189-year-old skull, which is on display in the Warren Anatomical Museum at Harvard Medical School, is now fragile and unlikely to again be subjected to medical imaging, the researchers had to track down the last known imaging data, from 2001, which had been lost due to various circumstances at Brigham and Women's Hospital, a teaching affiliate of Harvard, for some 10 years.

The authors were able to recover the computed tomographic data files and managed to reconstruct the scans, which revealed the highest-quality resolution available for modeling Gage's skull. Next, they utilized advanced computational methods to model and determine the exact trajectory of the tamping iron that shot through his skull. Finally, because the original brain tissue was, of course, long gone, the researchers used modern-day of males that matched Gage's age and (right) handedness, then used software to position a composite of these 110 images into Gage's virtual skull, the assumption being that Gage's anatomy would have been similar.

Van Horn found that nearly 11 percent of Gage's white matter was damaged, along with 4 percent of the cortex.

"Our work illustrates that while cortical damage was restricted to the left frontal lobe, the passage of the tamping iron resulted in the widespread interruption of white matter connectivity throughout his brain, so it likely was a major contributor to the behavioral changes he experienced," Van Horn said. "Connections were lost between the left frontal, left temporal and right frontal cortices and the left limbic structures of the brain, which likely had considerable impact on his executive as well as his emotional functions."

And while Gage's personality changed, he eventually was able to travel and find employment as a stagecoach driver for several years in South America. Ultimately, he died in San Francisco, 12 years after the accident.

Van Horn noted a modern parallel.

"The extensive loss of connectivity, affecting both hemispheres, plus the direct damage by the rod, which was limited to the left cerebral hemisphere, is not unlike modern patients who have suffered a traumatic brain ," he said. "And it is analogous to certain forms of degenerative diseases, such as Alzheimer's disease or frontal temporal dementia, in which neural pathways in the frontal lobes are degraded, which is known to result in profound ."

Van Horn noted that the quantification of the changes to Gage's brain's pathways might well provide important insights for clinical assessment and outcome-monitoring in modern-day trauma patients.

Explore further: The brain's stunning genomic diversity revealed

More information: Van Horn JD, Irimia A, Torgerson CM, Chambers MC, Kikinis R, et al. (2012) Mapping Connectivity Damage in the Case of Phineas Gage. PLoS ONE 7(5):e37454. doi:10.1371/journal.pone.0037454

Related Stories

The brain's stunning genomic diversity revealed

September 12, 2016
Our brains contain a surprising diversity of DNA. Even though we are taught that every cell in our body has the same DNA, in fact most cells in the brain have changes to their DNA that make each neuron a little different.

Adult brain prunes branched connections of new neurons

May 2, 2016
When tweaking its architecture, the adult brain works like a sculptor—starting with more than it needs so it can carve away the excess to achieve the perfect design. That's the conclusion of a new study that tracked developing ...

Scientists tap the smarts of mice, capture problem-solving in action

March 7, 2016
Scientists at the University of California, Berkeley, have captured unique images of problem-solving in action by tapping into the minds of mice. The study shows rapid rewiring in the frontal brains of mice after they learn ...

Small molecule keeps new adult neurons from straying, may be tied to schizophrenia

July 6, 2016
A small stretch of ribonucleic acid called microRNA could make the difference between a healthy adult brain and one that's prone to disorders including schizophrenia.

How our brain networks: Research reveals white matter 'scaffold' of human brain

February 11, 2014
For the first time, neuroscientists have systematically identified the white matter "scaffold" of the human brain, the critical communications network that supports brain function.

People with anger disorder have decreased connectivity between regions of the brain

July 6, 2016
People with intermittent explosive disorder (IED), or impulsive aggression, have a weakened connection between regions of the brain associated with sensory input, language processing and social interaction.

Recommended for you

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

RobertKarlStonjek
not rated yet May 17, 2012
As was reported at the time, Gage had a brain infection that put him in a coma from which he wasn't expected to recover. Before the infection Gage's behaviour was normal, afterward it was altered. Thus it was the infection that did the most damage, not the tamping rod.

Why doesn't anybody bother to read eye witness accounts???
HydraulicsNath
not rated yet May 21, 2012
regardless of any report they still need to be taken with a pinch of salt.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.