Researchers spearhead groundbreaking research into treatment of brain swelling

May 22, 2012

Researchers at Trinity College Dublin have reported the results of groundbreaking research into the prevention of cerebral oedema or swelling of the brain, a major cause of death in people who have sustained a traumatic injury to the brain, out of hospital cardiac arrest or stroke. The research, which is published this week in the international journal, Nature Communications, uses a radically new patented technology, developed in Ireland and termed, 'Neuronal Barrier Modulation' which has been shown in an animal model simulating human brain swelling, to be highly effective in reducing the dangerous effects of this condition, while improving cognitive outcome. The research was sponsored by the US Department of Defense and Enterprise Ireland.

The researchers have devised a method of safely manipulating the blood vessels in the brain to allow for periodic opening of tight junction channels between cells lining the vessels. A simple medication can be injected into a peripheral vein, rendering the blood vessels in the brain marginally and reversibly permeable to and this procedure allows the fluid in the brain, largely comprising water, to efficiently drain back into the blood.

"Unfortunately, there has been little change in treatment of acute over the past 80 years and this is a major cause of mortality in traumatic brain injury (TBI), stroke and out-of-hospital cardiac arrest," says Senior Author of the Nature Communications paper, Dr. Matthew Campbell, of the Ocular Genetics Unit at Trinity College Dublin. "We developed the technique initially for treatment of neuronal edema in cases where injury has occurred to the , the region of the brain involved in vision, in view of our Unit's profile in vision research, however, the same method can be used in alleviating edema in all ," says Dr. Campbell.

In Europe alone, brain injuries cause over 66,000 deaths while almost 1.6 million people are admitted to hospital each year. Similar numbers are affected by stroke and cardiac arrest. In fact, more people suffer a (TBI) each year than the numbers diagnosed with breast, lung, prostate, brain, and colon cancer combined.

"The medication is based on the use of RNA Interference, a demanding technology which has had a bumpy ride within the pharmaceuticals industry in recent years, and I am delighted that a highly effective and simply deployable therapeutic strategy has emerged based on this technology. There is now a clear path to clinical deployment," says Professor Pete Humphries, Director of the Ocular Genetics Unit at Trinity College Dublin, where the work was carried out.

"Malignant brain swelling as a consequence of , head injury, stroke, and brain tumours is the single most common factor leading to death in Western society and plays a major role in worsening the outcome of those who survive. Given how common these conditions are, anything that could significantly reduce the effect of swelling is likely to have a profound impact on morbidity and mortality and will have reverberations though the public health system," continued co-author, neurologist, Dr Colin Doherty, MD, St James's Hospital, Dublin.

The technology the researchers have reported is planned to enter Phase I clinical trials both here, with neurologist Dr Colin Doherty and in the US along with the team's collaborator, neurosurgeon Professor Gerald Grant, at Duke University and will be developed by the recently established Irish Company, Avena Therapeutics Ltd. Veteran life-science investor and Executive Chairman of the Company, Jeremy L. Curnock Cook says: "This sort of thing doesn't happen too often and we have now been presented with a remarkable and exciting opportunity thanks to the Trinity researchers and their supporters both here and in the US".

Explore further: Traumatic brain injury: NIH-funded researchers will assess biomarkers for diagnosis and treatment

More information: Full title of the paper "Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury"

Related Stories

Traumatic brain injury: NIH-funded researchers will assess biomarkers for diagnosis and treatment

August 3, 2011
Biomarkers in the bloodstream could provide physicians with a quick and accurate method of assessing the severity of traumatic brain injury (TBI) and helping deliver and monitor the results of therapies, such as progesterone ...

Traumatic brain injury linked with tenfold increase in stroke risk

July 28, 2011
If you suffer traumatic brain injury, your risk of having a stroke within three months may increase tenfold, according to a new study reported in Stroke: Journal of the American Heart Association.

Skull resconstruction immediately following traumatic brain injury worsens brain damage

March 22, 2012
Immediate skull reconstruction following trauma that penetrates or creates an indentation in the skull can aggravate brain damage inflicted by the initial injury, a study by a University of South Florida research team reports. ...

Recommended for you

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.