Stress may delay brain development in early years

June 6, 2012 by Chris Barncard

Stress may affect brain development in children — altering growth of a specific piece of the brain and abilities associated with it — according to researchers at the University of Wisconsin–Madison.

"There has been a lot of work in animals linking both acute and chronic to changes in a part of the brain called the prefrontal cortex, which is involved in complex cognitive abilities like holding on to important information for quick recall and use," says Jamie Hanson, a UW–Madison psychology graduate student. "We have now found similar associations in humans, and found that more exposure to stress is related to more issues with certain kinds of cognitive processes."

Children who had experienced more intense and lasting stressful events in their lives posted lower scores on tests of what the researchers refer to as spatial working memory. They had more trouble navigating tests of short-term memory such as finding a token in a series of boxes, according to the study, which will be published in the June 6 issue of the Journal of Neuroscience.

Brain scans revealed that the anterior cingulate, a portion of the prefrontal cortex believed to play key roles in spatial working memory, takes up less space in children with greater exposure to very stressful situations.

"These are subtle differences, but differences related to important cognitive abilities" Hanson says.

But they maybe not irreversible differences.

"We're not trying to argue that stress permanently scars your brain. We don't know if and how it is that stress affects the brain," Hanson says. "We only have a snapshot — one MRI scan of each subject — and at this point we don't understand whether this is just a delay in development or a lasting difference. It could be that, because the brains is very plastic, very able to change, that children who have experienced a great deal of stress catch up in these areas."

The researchers determined stress levels through interviews with children ages 9 to 14 and their parents. The research team, which included UW–Madison psychology professors Richard Davidson and Seth Pollak and their labs, collected expansive biographies of stressful events from slight to severe.

"Instead of focusing in on one specific type of stress, we tried to look at a range of stressors," Hanson says. "We wanted to know as much as we could, and then use all this information to later to get an idea of how challenging and chronic and intense each experience was for the child."

Interestingly, there was little correlation between cumulative life stress and age. That is, children who had several more years of life in which to experience stressful episodes were no more likely than their younger peers to have accumulated a length stress resume. Puberty, on the other hand, typically went hand-in-hand with heavier doses of stress.

The researchers, whose work was funded by the National Institutes of Health, also took note of changes in brain tissue known as and . In the important brain areas that varied in volume with stress, the white and gray matter volumes were lower in tandem.

White matter, Hanson explained, is like the long-distance wiring of the brain. It connects separated parts of the brain so that they can share information. Gray matter "does the math," Hanson says. "It takes care of the processing, using the information that gets shared along the white matter connections."

Gray matter early in development appears to enable flexibility; children can play and excel at many different activities. But as kids age and specialize, gray matter thins. It begins to be "pruned" after puberty, while the amount of white matter grows into adulthood.

"For both gray and white matter, we actually see smaller volumes associated with high stress," Hanson says. "Those kinds of effects across different kinds of tissue, those are the things we would like to study over longer periods of time. Understanding how these areas change can give you a better picture of whether this is just a delay in development or more lasting."

More study could also show the researchers how to help children who have experienced an inordinate amount of stress.

"There are groups around the country doing working memory interventions to try to train or retrain people on this particular cognitive ability and improve performance," Hanson says. "Understanding if and how stress affects these processes could help us know whether there may be similar interventions that could aid children living in stressful conditions, and how this may affect the ."

Explore further: Children with fetal alcohol spectrum disorders have less deep-gray brain matter

Related Stories

Children with fetal alcohol spectrum disorders have less deep-gray brain matter

May 19, 2011
Children and youth who have fetal alcohol spectrum disorders have less deep-gray matter in their brains compared to children who don’t have the condition, according to a collaborative study by a multidisciplinary team ...

Repeated stress in pregnancy linked to children's behavior

April 20, 2011
Research from Perth's Telethon Institute for Child Health Research has found a link between the number of stressful events experienced during pregnancy and increased risk of behavioural problems in children.

Recommended for you

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.