Brain variants of protein associated with Huntington's and other neurodegenerative diseases identified

July 23, 2012
The history of a Sicilian farmland estate is set in stone. Excavations show thousand years of existence.

(Medical Xpress) -- A protein essential for metabolism and recently associated with neurodegenerative diseases also occurs in several brain-specific forms. This discovery emerged in the course of a research project funded by the Austrian Science Fund FWF, the findings of which have now been published in the journal Human Molecular Genetics. The scientists working on the project discovered a large new region in the genetic code of the protein PGC-1alpha. Previously unknown variations of the protein, which can be found specifically in the brain, are produced from this region. This discovery may provide tissue-specific starting points for the development of new treatments for neurodegenerative diseases like Huntington's, Parkinson's and Alzheimer's.

PGC-1alpha is a real jack-of-all-trades. As a central regulator of metabolic genes that coordinate , the protein, which functions as a "transcriptional coactivator", influences major body functions. The extent to which the protein also influences like obesity, diabetes and is unclear, and was under further investigation as part of a research project funded by the Austrian Science Fund FWF. In the course of their research, however, the scientists stumbled on unexpected findings with a particular relevance for .

Major Difference

A research team headed by Prof. Wolfgang Patsch from the Departments of Pharmacology and , and Laboratory Medicine at the Paracelsus Medical University established that the gene which codes for PGC-1alpha (PPARGC1A) is six times larger than hitherto assumed. A new promoter was actually found at some distance (ca. 580 kb) from the previously known gene. A promoter is a usually occurring upstream from a gene that can ultimately control how that gene is expressed as a protein. The transmission of from DNA to , i.e. transcription, is an important intermediate step in this process.

Transcripts, which are produced from the newly discovered promoter, were now examined in detail as part of the research project. "These transcripts differ in important regions from those encoded by the previously characterized - reference - PPARGC1A locus. Based on these differences, we were able to show that these previously unknown transcripts are produced specifically in human brain cells and are at least as common there as the reference transcripts," explains Dr. Selma M. Soyal, first author of the article currently published in . Further analyzes showed that the differences in the transcripts lead to the formation of proteins which differ from the protein that acts as a reference, in particular at the N-terminus. Other differences were found within the PGC-1alpha amino acid chain.

When the different PGC-1alpha proteins were localized in human cells (SH-SY5Y), another surprise awaited the scientists: whereas the reference protein was located mainly in the cell nucleus, one of the newly discovered variants was mainly found in the surrounding cytoplasm; another was found both in the nucleus and in the cytoplasm. According to Prof. Patsch: "It is likely that the differences we found in the transcripts influence mechanisms in the finished proteins which control their localization in the cell."

A Protein With Impact

The detailed functional characterization of the brain-specific proteins could prove significant, as PGC-1alpha is associated with various neurodegenerative diseases such as Huntington's disease, Parkinson's and Alzheimer's - a link that was also confirmed by the project. Using complex statistical analyses, sequence differences in the new promoter were examined in 1.706 Huntington patients as part of a collaboration with the European Huntington's Disease Network. A clear correlation emerged here between different sequence patterns and the age of onset of the disease in the patients. In addition, the scientists were also able to show that the newly discovered is active in nerve tissue. This indicates that it may actually play an important role in the only partly known links between PGC-1alpha and the neurodegenerative diseases in question.

Overall, the findings of this project, which is funded by the Austrian Science Fund FWF, indicate complex functions of PGC-1alpha in humans. If the scientists succeed in reaching a better understanding of this complexity, PGC-1alpha could provide new possibilities for future therapeutic intervention in key neurodegenerative diseases.

Explore further: Two proteins offer a 'clearer' way to treat Huntington's disease

More information: A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. S. M. Soyal, et al. and For the European Huntington Disease Network. Human Molecular Genetics, 2012, doi: 10.1093/hmg/dds177

Related Stories

Two proteins offer a 'clearer' way to treat Huntington's disease

July 11, 2012
In a paper published in the July 11 online issue of Science Translational Medicine, researchers at the University of California, San Diego School of Medicine have identified two key regulatory proteins critical to clearing ...

Insulin resistance, inflammation and a muscle-saving protein

May 1, 2012
Type 2 diabetes has reached epidemic proportions around the world, fueled in large part by the equally alarming expansion of obesity as a global health problem. But while it's well-known that obesity is the most common cause ...

Recommended for you

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

Team completes atlas of human DNA differences that influence gene expression

October 11, 2017
Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable ...

Genetic advance for male birth control

October 10, 2017
When it comes to birth control, many males turn to two options: condoms or vasectomies. While the two choices are effective, both methods merely focus on blocking the transportation of sperm.

Researchers uncover new congenital heart disease genes

October 9, 2017
Approximately one in every 100 babies is born with congenital heart disease (CHD), and CHD remains the leading cause of mortality from birth defects. Although advancements in surgery and care have improved rates of survival ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.