New probe provides vital assist in brain cancer surgery

July 24, 2012

A new probe developed collaboratively at Norris Cotton Cancer Center and Dartmouth College's Thayer School of Engineering uses an innovative fluorescence-reading technology to help brain surgeons distinguish cancerous tissue from normal tissue. The probe tool, now already in use at the Cancer Center for brain surgery, may one day be used for surgeries for a variety of cancers.

Performing surgery to remove a brain tumor requires surgeons to walk a very fine line. If they leave tumor behind, the tumor is likely to regrow; if they cut out too much normal tissue, they could cause permanent .

"Primary look just like ," says Keith Paulsen, PhD, a professor of biomedical engineering at Thayer School of Engineering and a member of the and Radiobiology Research Program at Norris Cotton Cancer Center. "But if you look at them under a particular kind of light, they look much different."

To improve their ability to differentiate between and healthy tissue, surgeons can have patients take an oral dose of the chemical 5-aminolevulinic acid (ALA). An enzyme metabolizes ALA, producing the fluorescent protein protoporphyrin IX (PpIX). Tumor cells have a higher than normal cells, so they accumulate more PpIX—and therefore fluoresce, or "glow," when exposed to blue light.

But this method was thought to be not sensitive enough to highlight brain tumors that are less metabolically active, like low-grade gliomas. To address this problem, MD-PhD student Pablo Valdes, PhD, and his research mentors—David Roberts, MD, the chief of neurosurgery at Dartmouth-Hitchcock Medical Center, and Dr. Paulsen—used a probe (which they helped develop) that combines violet-blue and white light to simultaneously analyze both the concentration of PpIX and four other tumor biomarkers: PpIX breakdown products, oxygen saturation, hemoglobin concentration, and irregularity of cell shape and size. The probe reads how light travels when it hits the tissue, sends this data to a computer, runs it through an algorithm, and produces a straightforward answer as to whether the tissue is cancerous.

"Our big discovery is that we can use the probe's reading of the fluorescing agent to measure the existence of a low-grade tumor in tissue," says Dr. Paulsen. "The probe is basically an enabling technology to show that information to the surgeon – a visual aid."

He says that when they first saw the results of using their fluorescing agent and probe on low-grade brain tumors, it was "jaw-dropping. The tumor glowed like lava."

The Thayer/Norris Cotton Cancer Center/Dartmouth-Hitchcock Medical Center team, which has been working on the brain probe for about six years in collaboration with researchers from the University of Toronto, built on research that was originally conducted in Germany about 15 years ago. But the German research did not focus on low-grade tumors. The assumption, Dr. Paulsen says, was that, due to the blood-brain barrier, low-grade tumors did not have enough PplX and therefore would not fluoresce.

In a pilot study, Roberts operated on 10 patients with gliomas. He used a microscope throughout the surgery to see the fluorescence and used the hand-held probe to evaluate sections of the tissue where the fluorescence was not definitive. After the surgeries were complete, a pathologist evaluated how accurately the probe had identified tumor tissue.

The results, published in the Journal of Biomedical Optics, are striking. Diagnoses based on fluorescence only had an accuracy of 64 percent. But when Roberts used the probe, the accuracy increased to 94 percent, meaning that Roberts was much more successful in differentiating between tumor tissue and normal tissue. Although the study was small, it introduces a promising method to help surgeons remove only what they want and nothing more.

Dr. Paulsen says that a protocol is in place for a similar study on lung cancer tumors. He thinks the brain may have applications for other cancers as well, but for now the research will have to proceed one cancer type at a time.

Explore further: University Hospitals Seidman Cancer Center tests novel drug that makes brain tumors glow hot pink

Related Stories

University Hospitals Seidman Cancer Center tests novel drug that makes brain tumors glow hot pink

December 1, 2011
Just 24 hours after Lisa Rek sang at her niece's wedding, her husband Brad was driving her to a local hospital.

Recommended for you

Study prompts new ideas on cancers' origins

December 16, 2017
Rapidly dividing, yet aberrant stem cells are a major source of cancer. But a new study suggests that mature cells also play a key role in initiating cancer—a finding that could upend the way scientists think about the ...

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.