Study reveals new mechanism that might promote cancer's growth and spread in the body

July 10, 2012

Researchers have discovered a previously unknown mechanism that promotes the growth and spread of cancer. The mechanism involves key immune cells and a new role for small regulatory molecules called microRNA. The findings suggest a new strategy for treating cancer and perhaps diseases of the immune system.

Tiny vesicles released by tumors cells are taken up by healthy immune cells, causing the immune cells to discharge chemicals that foster cancer-cell growth and spread, according to a study by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) and at Children's Hospital in Los Angeles.

The study uses lung cancer cells to show that the vesicles contain potent regulatory molecules called microRNA, and that the uptake of these molecules by immune cells alters their behavior. The process in humans involves a fundamental receptor of the immune system called Toll-like receptor 8 (TLR8).

The findings, published in the early edition of the Proceedings of the National Academy of Sciences, suggest a new strategy for treating cancer and diseases of the immune system, the researchers say, and a new role for microRNA in the body.

"This study reveals a new function of microRNA, which we show binds to a protein receptor," says principal investigator Dr. Carlo Croce, director of Ohio State's Human Cancer Genetics program and a member of the OSUCCC – James Molecular Biology and Cancer Genetics program. "This tells us that some cancer-released microRNAs can bind and activate a receptor in a hormone-like fashion, and this has not been seen before."

MicroRNAs help control the type and amount of proteins that cells make, and they typically do this by binding with the messenger-RNA that encodes a protein.

"In this study we discovered a completely new mechanism used by cancer to grow and spread, therefore we can develop new drugs that fight tumors by entering this newly identified breach in 's fortress," says co-corresponding author and first author Dr. Muller Fabbri, assistant professor of Pediatrics and Molecular Biology and Immunology at the Keck School of Medicine of the University of Southern California.

"Equally exciting, we show that this mechanism involves a fundamental receptor of the , TLR8, suggesting that the implications of this discovery may extend to other diseases such as autoimmune and inflammatory diseases," Fabbri says.

Key findings of the study include the following:

  • Lung tumor cells secrete microRNA-21 and microRNA-29a in called exosomes, and these exosomes are taken up by called macrophages located where tumor tissue abuts normal tissue.
  • In human macrophages, microRNA-29a and microRNA-21 bind with TLR8, causing the macrophages to secrete -necrosis-factor alpha and interleukin-6, two cytokines that promote inflammation.
  • Increased levels of the two cytokines were associated with an increase in the number of tumors per lung in an animal model, while a drop in those levels led to a drop in the number per lung, suggesting that they also play a role in metastasis.

Explore further: How early breast tumors become deadly: A small group of molecules might hold the answer

Related Stories

How early breast tumors become deadly: A small group of molecules might hold the answer

February 7, 2012
Researchers have discovered a restricted pattern of molecules that differentiate early-stage breast tumors from invasive, life-threatening cancer. They also found a similar molecular signature that correlated with the aggressiveness ...

Study reveals how normal cells fuel tumor growth

December 21, 2011
A new study published in the journal Nature Cell Biology has discovered how normal cells in tumors can fuel tumor growth.

miR loss may power maligant transformation in chronic leukemia

July 5, 2012
Loss of a particular microRNA in chronic lymphocytic leukemia shuts down normal cell metabolism and turns up alternative mechanisms that enable cancer cells to produce the energy and build the molecules they need to proliferate ...

Study reveals mechanism of lung-cancer drug resistance

January 19, 2012
New research published in Nature Medicine indicates that targeted drugs such as gefitinib might more effectively treat non-small cell lung cancer if they could be combined with agents that block certain microRNAs.

Recommended for you

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.