Sodium buildup in brain linked to disability in multiple sclerosis

July 17, 2012

A buildup of sodium in the brain detected by magnetic resonance imaging (MRI) may be a biomarker for the degeneration of nerve cells that occurs in patients with multiple sclerosis (MS), according to a new study published online in the journal Radiology.

The study found that patients with early-stage MS showed accumulation in specific , while patients with more advanced disease showed sodium accumulation throughout the whole brain. Sodium buildup in motor areas of the brain correlated directly to the degree of disability seen in the advanced-stage patients.

"A major challenge with multiple sclerosis is providing patients with a prognosis of disease progression," said Patrick Cozzone, Ph.D., director emeritus of the Center for Magnetic Resonance in Biology and Medicine, a joint unit of National Center for Scientific Research (CNRS) and Aix-Marseille University in Marseille, France. "It's very hard to predict the course of the disease."

In MS, the body's immune system attacks the protective sheath (called myelin) that covers , or neurons, in the brain and spinal cord. The scarring affects the neurons' ability to conduct signals, causing neurological and . The type and severity of , as well as the progression of the disease, vary from one patient to another.

Dr. Cozzone, along with Wafaa Zaaraoui, Ph.D., research officer at CNRS, Jean-Philippe Ranjeva, Ph.D., professor in neuroscience at Aix-Marseille University and a European team of interdisciplinary researchers used 3 Tesla (3T) sodium MRI to study relapsing-remitting multiple sclerosis (RRMS), the most common form of the disease in which clearly defined attacks of worsening neurologic function are followed by periods of recovery. Sodium MRI produces images and information on the of cells in the body.

"We collaborated for two years with chemists and physicists to develop techniques to perform 3T sodium MRI on patients," Dr. Zaaraoui said. "To better understand this disease, we need to probe new molecules. The time has come for probing brain sodium concentrations."

Using specially developed hardware and software, the researchers conducted sodium MRI on 26 MS patients, including 14 with early-stage RRMS (less than five years in duration) and 12 with advanced disease (longer than five years), and 15 age- and sex-matched control participants.

In the early-stage RRMS patients, sodium MRI revealed abnormally high concentrations of sodium in specific brain regions, including the brainstem, cerebellum and temporal pole. In the advanced-stage RRMS patients, abnormally high sodium accumulation was widespread throughout the whole brain, including normal appearing brain tissue.

"In RRMS patients, the amount of sodium accumulation in gray matter associated with the motor system was directly correlated to the degree of patient disability," Dr. Zaaraoui said.

Current treatments for MS are only able to slow the progress of the disease. The use of sodium accumulation as a biomarker of neuron degeneration may assist pharmaceutical companies in developing and assessing potential treatments.

"Brain sodium MR imaging can help us to better understand the disease and to monitor the occurrence of neuronal injury in MS patients and possibly in with other disorders," Dr. Ranjeva said.

Explore further: Using powerful MRI to track iron levels in brain could be new way to monitor progression of MS

More information: "Distribution of Brain Sodium Accumulation Correlates with Disability in Multiple Sclerosis–A Cross-Sectional 23Na MR Imaging Study." Radiology.

Related Stories

Using powerful MRI to track iron levels in brain could be new way to monitor progression of MS

December 15, 2011
Medical researchers at the University of Alberta have discovered a new way to track the progression of multiple sclerosis (MS) in those living with the disease, by using a powerful, triple strength MRI to track increasing ...

Neuroscientists' discovery could bring relief to epilepsy sufferers

June 21, 2011
Researchers at the University of California, Riverside have made a discovery in the lab that could help drug manufacturers develop new antiepileptic drugs and explore novel strategies for treating seizures associated with ...

Potential impact of cinnamon on multiple sclerosis studied

June 22, 2011
A neurological scientist at Rush University Medical Center has received a grant from the National Institutes of Health (NIH) to evaluate whether cinnamon, a common food spice and flavoring material, may stop the destructive ...

Recommended for you

Study explores whole-body immunity

November 21, 2017
Over the next few months, millions of people will receive vaccinations in the hope of staving off the flu—and the fever, pain, and congestion that come with it.

Drug could cut transplant rejection

November 21, 2017
A diabetes drug currently undergoing development could be repurposed to help end transplant rejection, without the side-effects of current immunosuppressive drugs, according to new research by Queen Mary University of London ...

Atopic eczema—one size does not fit all

November 21, 2017
Researchers from the UK and Netherlands have identified five distinct subgroups of eczema, a finding that helps explain how the condition can affect people at different stages of their lives.

Breast milk found to protect against food allergy

November 20, 2017
Eating allergenic foods during pregnancy can protect your child from food allergies, especially if you breastfeed, suggests new research from Boston Children's Hospital. The study, published online today in the Journal of ...

Zika-related nerve damage caused by immune response to the virus

November 20, 2017
The immune system's response to the Zika virus, rather than the virus itself, may be responsible for nerve-related complications of infection, according to a Yale study. This insight could lead to new ways of treating patients ...

How a poorly explored immune cell may impact cancer immunity and immunotherapy

November 17, 2017
The immune cells that are trained to fight off the body's invaders can become defective. It's what allows cancer to develop. So most research has targeted these co-called effector T-cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.