'Stoned' gene key to maintaining normal brain function

July 6, 2012, University of Liverpool
Dr Stephen Royle: “This research is another step towards fully understanding the complexities of the human brain.”

(Medical Xpress) -- Scientists at the University of Liverpool have found that a protein produced by a gene identified in fruitflies, is responsible for communication between nerve cells in the brain.

The ‘stoned’ gene was discovered in fruitflies by scientists in the 1970s. When this gene was mutated, the flies had problems walking and flying, giving rise to the term ‘stoned’ gene. The same gene was found in mammals some years later, but until now scientists have not known precisely what this gene is responsible for and why it causes problems with physical functions when it mutates.

‘Packets of chemicals’

Scientists at Liverpool have found that the protein the gene expresses in mammals, called stonin2, is responsible for retrieving ‘packets’ of chemicals that in the brain release in order to communicate with each other.  The inability of the gene to express this protein in the fruitfly study, suggests why the insect appeared not to be able to walk or fly normally.

The team used advanced techniques to inactivate stonin2 for short and long periods of time in animal cells grown in the laboratory. The cells used where from an area of the brain associated with learning and memory.  They showed that without stonin2 the nerve cells could not retrieve the ‘packets’ needed to transport the chemicals required for communications between nerve cells.

Dr Stephen Royle, from the University’s Institute of Translational Medicine, explains: “Nerve cells in the brain communicate by releasing ‘packets’ of chemicals.  These ‘packets’ must be retrieved and refilled with chemicals so that they can be used once again. This recycling programme is very important for nerve cells to keep communicating with each other. 

“We have shown that a protein called stonin 2 is needed for the packets to be retrieved. There is currently no evidence to suggest that the gene which expresses this is mutated in human disease, but any failure in its function would be disastrous.  The research is another step towards fully understanding the complexities of the human .”

The research is published in the journal, Current Biology.

Explore further: Gene 'switch' is another possible cause for depression

More information: www.cell.com/current-biology/a … 0960-9822(12)00635-5

Related Stories

Gene 'switch' is another possible cause for depression

March 6, 2012
(Medical Xpress) -- UK scientists have discovered another piece in the jigsaw behind depression with a finding that could help with the future development of more personalised treatment for the illness.

Scientists expose important new weak spot in cancer cells

December 5, 2011
(Medical Xpress) -- Cancer Research UK scientists have discovered that cancer cells can ‘bag up and bin’ a toxic protein to cheat death – revealing a new Achilles heel in cancer cells that could be targeted ...

Gene gives cells a 'safety belt' against genetic damage

March 22, 2012
(Medical Xpress) -- Researchers at King’s College London have identified a gene which offers cells a ‘safety belt’ against genetic damage by stopping them dividing at the wrong time.

Prostate cancer early warning protein detected

May 31, 2012
(Medical Xpress) -- Scientists at the University have discovered a protein, only present in prostate cancer cells, that could be used as a marker to detect early signs of the disease.     

Brain cells created from patients' skin cells

February 7, 2012
(Medical Xpress) -- Cambridge scientists have, for the first time, created cerebral cortex cells – those that make up the brain’s grey matter – from a small sample of human skin.  The researchers’ ...

Study shows how cannabis use during adolescence affects brain regions associated with schizophrenia

May 8, 2012
New research from the Royal College of Surgeons in Ireland (RCSI) published in Nature’s Neuropsychopharmacology has shown physical changes to exist in specific brain areas implicated in schizophrenia following the use ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.