New study finds external stimulation impacts white matter development in the postnatal brain

August 13, 2012

A team at Children's National Medical Center has found that external stimulation has an impact on the postnatal development of a specific region of the brain. Published in Nature Neuroscience, the study used sensory deprivation to look at the growth and collection of NG2-expressing oligodendrocyte progenitor cells (NG2 cells) in the sensory cortex of the brain. This type of research is part of the Center for Neuroscience Research focus on understanding the development and treatment of white matter diseases.

NG2 cells can develop into oligodendrocytes progenitor cells that generate myelin, the protective material around the axons of neurons, but this is based on functional and developmental interactions with outside stimuli. With this kind of plasticity, or ability to change and mold a cell in different ways, the researchers were able to determine that can control the number and positioning of developing NG2 cells.

"Understanding how external stimulation and experience impact the development of NG2 cells means that we can try to modulate these factors to help regulate and promote the expansion of these cells. This could ultimately have an impact on white matter diseases," stated Vittorio Gallo, PhD, study coordinator and Director of the Center for Neuroscience Research at the Children's Research Institute. "We will now investigate in more detail how sensory experience can regulate NG2 cell development, particularly how experience activates specific genes and in these cells."

Collectively called NG2 progenitors, these cells also serve as the primary source of cells to regenerate oligodendrocytes and myelin in the postnatal brain. Without myelin, the brain does not function properly. Myelination can be impaired for a number of reasons, resulting in mental retardation and developmental disabilities. Myelination, white matter growth and repair, and the study of complex mechanisms of pre- and postnatal are a key focus of the Center for Neuroscience Research at Children's National, which also houses the White Matter Diseases Program, one of the largest clinical programs in the country for treating children with disorders that cause the brain's to degenerate.

Explore further: Researchers make breakthrough in understanding white matter development

Related Stories

Researchers make breakthrough in understanding white matter development

September 29, 2011
Through the identification of a gene's impact on a signaling pathway, scientists at Children's National Medical Center continue to make progress in understanding the mechanics of a key brain developmental process: growth ...

Team gains understanding of white matter in infants receiving heart surgery

March 8, 2012
A collaborative team of researchers at Children's National Medical Center are making progress in understanding how to protect infants needing cardiac surgery from white matter injury, which impacts the nervous system. The ...

Brain electrical activity spurs insulation of brain's wiring

August 11, 2011
(Medical Xpress) -- Researchers at the National Institutes of Health have discovered in mice a molecular trigger that initiates myelination, the process by which brain cell networks are reinforced with an insulating material ...

Hope for infant brain injuries like cerebral palsy as well as multiple sclerosis

June 27, 2011
(Medical Xpress) -- In a new study published in Nature Neuroscience, a team of researchers revealed the discovery of a key protein necessary for nerve repair and could lead to the development of a treatment for brain injuries ...

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (1) Aug 14, 2012
For those who understand the role of gonadotropin releasing hormone in brain development, this is what they are reporting on.

Experience-dependent regulation of NG2 progenitors in the developing barrel cortex
http://www.nature...190.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.