For mitochondria, bigger may not be better

August 23, 2012

Goldilocks was on to something when she preferred everything "just right." Harvard Medical School researchers have found that when it comes to the length of mitochondria, the power-producing organelles, applying the fairy tale's mantra is crucial to the health of a cell. More specifically, abnormalities in mitochondrial length promote the development of neurodegenerative diseases such as Alzheimer's.

"There had been a fair amount of interest in mitochondria in Alzheimer's and tau-related diseases, but causality was unknown," said Brian DuBoff, first author of the study and a post-doctoral research fellow at Massachusetts General Hospital.

"Ultimately, a deeper understanding of the relationship between mitochondrial function and Alzheimer's may guide us to develop more targeted therapies in the future," said Mel Feany, HMS professor of pathology at Brigham and Women's Hospital and senior author of the paper.

The findings will be published online in the August 23 issue of Neuron.

Tau-related diseases are caused when tau, a protein most commonly found in , malfunctions. Tau binds to microtubules in cells, a process known as stabilization. This binding is necessary so the microtubules can help maintain and aid in intracellular processes such as transporting molecules. When tau is defective, most often due to changes introduced during , it can accumulate in neurofibrillary tangles, one of the primary markers of Alzheimer's.

In this particular study, conducted in with defective , DuBoff found that the mitochondria in the of these flies were elongated compared with the mitochondria in flies with normal tau. The elongation, he observed, adversely affected mitochondrial function.

"Normally, one mitochondrion will split into two, two mitochondria will join into one, and that's a critical process for the health and stability of the mitochondria," said DuBoff. "This mitochondrial dynamic happens continuously in almost all cells. Interruption of this process leads to cell death, and loss of nerve cells in the brain results in loss of function—memory loss and difficulty in comprehension and coordination." The presence of defective tau, then, interrupts the functioning of mitochondria and contributes to neurodegeneration.

To further observe how mitochondrial dynamics were affected by the presence of defective tau, the researchers modified two sets of genes in human-tau-expressing flies, one that controls how mitochondria divide and another that guides how they come together. When the expression of the gene that causes mitochondrial lengthening, or fusion, was increased, the level of neurodegeneration in the flies increased and the flies were sicker. Conversely, when the expression of the gene that causes mitochondrial division, or fission, was increased, the defect reversed and the flies' condition improved.

The study also showed that, in addition to tau, two other key proteins influenced the neurodegenerative process: DRP1, which helps in the fission of mitochondria, and actin, which is essential to maintaining cell structure and movement. A previous study in Feany's lab had shown that the presence of defective tau hampers the activity of actin. With this knowledge, the researchers were able to piece together the relationship among the three proteins. DRP1 and actin are interdependent: the regulatory state of actin is essential for DRP1 and to come together, thus preserving mitochondrial dynamics. But the presence of defective tau harms this relationship, rendering DRP1 incapable of maintaining mitochondrial dynamics, which ultimately leads to neurodegeneration.

"We have a good idea now of where the process starts. We know it ends with neurodegeneration, and with this study, we know some milestones along the way," said Feany. "But we still have to fill in the gaps and learn more about DRP1 and its role in this process."

"Many studies begin by looking at a normal biological process and then finding ways it goes wrong," said DuBoff. "We did the opposite. We started with the disease model, identified this phenomenon of DRP1 and mitochondrial dysfunction, and then followed it back to the basic biological regulation of this process."

Explore further: Two defective proteins conspire to impair the nerve cell's 'powerhouse' in Alzheimer's disease

Related Stories

Two defective proteins conspire to impair the nerve cell's 'powerhouse' in Alzheimer's disease

May 13, 2011
Two proteins that are abnormally modified in the brains of patients with Alzheimer disease collude, resulting in ill effects on the crucial energy centers of brain cells, according to new findings published online in Neurobiology ...

Anti-tau drug improves cognition, decreases tau tangles in Alzheimer's disease models

July 19, 2012
While clinical trial results are being released regarding drugs intended to decrease amyloid production - thought to contribute to decline in Alzheimer's disease - clinical trials of drugs targeting other disease proteins, ...

Mitochondrial dysfunction present early in Alzheimer's, before memory loss

February 29, 2012
Mitochondria -- subunits inside cells that produce energy -- have long been thought to play a role in Alzheimer's disease. Now Mayo Clinic researchers using genetic mouse models have discovered that mitochondria in the brain ...

Recommended for you

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.