Molecular switch identified that controls key cellular process

August 1, 2012

The body has a built-in system known as autophagy, or 'self-eating,' that controls how cells live or die. Deregulation of autophagy is linked to the development of human diseases, including neural degeneration and cancer.

In a study published online this week in the , scientists at the Ludwig Institute for in Oxford discovered a critical molecular switch that regulates . They also studied the links between autophagy and a cellular process called senescence that stops cell growth permanently.

The researchers identified ASPP2, a , as a that can dictate the ability of a common , known as the , to either stop or promote senescence.

As Yihua Wang and researchers in Xin Lu's group at the Ludwig Institute investigated the life cycle of – the most common connective tissue cells in animals – they found that reduced levels of the ASPP2 protein increase RAS oncogene-induced autophagic activity. This in turn prevented cells from entering senescence. Without ASPP2, the cells continued to proliferate unchecked, thereby promoting tumor growth.

ASPP2 is known to play a role in suppressing tumor development. Mice that have a deficiency or malfunction in this protein have a predisposition to developing tumors. And low ASPP2 levels in patients are linked to poor prognoses in cancers, such as large B-cell lymphomas. Reduced ASPP2 expression has also been observed in highly metastatic breast tumors. But until now, researchers did not understand why.

"We found that in the presence of the common cancer-causing RAS oncogene, ASPP2 interacted with a protein complex that is responsible for deciding cell fate via autophagy," said Yihua Wang, PhD, Ludwig researcher in Oxford.

"What this means is that the cell's emergency stop button is disabled when ASPP2 expression is reduced or lost, allowing it to proliferate unchecked as with cancer," added Wang.

"The balance between the RAS oncogene and ASPP2 activity is crucial to determining whether or not tumor growth is promoted. Our next step will be to identify ways to alter ASPP2 activity at that critical switch point. This could be an effective way to treat cancers with reduced ASPP2 expression and mutated RAS, such as breast and colon cancers," concluded Wang.

"Some of the recently developed anti-cancer drugs are potent inducers of autophagy. The new findings may also offer an explanation as to why patient response to these drugs can vary dramatically. There are factors at play within the body that can dictate authophagic activity and impact clinical outcomes," said Xin Lu, PhD, director of Ludwig's Oxford Branch. "While further study is needed, these findings may in the longer term help doctors to identify patients who are more likely to respond well to autophagic inhibition," added Lu.

Explore further: New study identifies novel role for PEA-15 protein in cancer growth

Related Stories

Recommended for you

Spinal cord stimulation relieves back pain without opioids

March 23, 2017

Doctors who treat patients suffering from back pain are exploring new approaches that help some patients avoid opioid drugs. The highly addictive prescription painkillers are fueling an epidemic of abuse and overdose deaths.

Surprising new role for lungs—making blood

March 22, 2017

Using video microscopy in the living mouse lung, UC San Francisco scientists have revealed that the lungs play a previously unrecognized role in blood production. As reported online March 22, 2017 in Nature, the researchers ...

Using a smartphone to screen for male infertility

March 22, 2017

More than 45 million couples worldwide grapple with infertility, but current standard methods for diagnosing male infertility can be expensive, labor-intensive and require testing in a clinical setting. Cultural and social ...

Weight-bearing exercises promote bone formation in men

March 22, 2017

Osteoporosis affects more than 200 million people worldwide and is a serious public health concern, according to the National Osteoporosis Foundation. Now, Pamela Hinton, associate professor in the Department of Nutrition ...

How the nervous system controls tumor growth

March 22, 2017

(Medical Xpress)—From the time it first comes online during development the nervous system begins to exact precise control over many biologic functions. In some cases, too much control. When it does, a little nerve-squelching ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.