Neutrophils: White blood cells mediate insulin resistance

August 5, 2012, University of California - San Diego
This is a false-colored, scanning electron micrograph of a neutrophil. Credit: UC San Diego School of Medicine

Researchers at the University of California, San Diego School of Medicine say neutrophils, an abundant type of white blood cell typically tasked with attacking bacteria and other foreign invaders, also plays an unexpected role in mediating insulin resistance – the central characteristic of type 2 diabetes, which afflicts an estimated 26 million Americans.

The findings are published in the August 5, 2012 Advance Online Publication of Nature Medicine.

Neutrophils are the first immune cells to respond to tissue inflammation, and can promote chronic inflammation by summoning other called macrophages. Chronic low-grade inflammation – common in adipose or fat tissue – is an important cause of systemic .

Using liver and fat cells from mice and humans and live mouse models, a team led by Jerrold M. Olefsky, MD, associate dean for scientific affairs at UC San Diego Health Sciences and professor of medicine, discovered that an enzyme secreted by neutrophils called neutrophil elastase (NE) impairs insulin signaling and boosts resistance. Conversely, deletion of NE in obese mice fed a high-fat diet improved insulin sensitivity.

"These results are largely unexpected," said Da Young Oh, an assistant project scientist in Olefsky's lab and study co-author. "Although several immune cells have been established in the etiology of insulin resistance, the role of neutrophils in this process has remained unclear until now."

Oh said neutrophils were considered to be "transient infiltrates," temporary cells (average lifespan: 5 days) that were incapable of sustaining chronic, low-grade inflammation. "Our studies now suggest neutrophils possess powerful immune modulatory effects," Oh said.

Specifically, use NE to activate a signaling pathway which triggers pathogen-eating macrophages to secrete proinflammatory molecules called cytokines. NE degrades IRS1, a key protein in the insulin signaling pathway in both liver and fat cells. Although NE has been shown to degrade this protein in lung cancer , the scientists said, the effect on insulin target tissues such as liver and adipose is striking.

The insulin-mediating role of makes them a new target for developing treatments of insulin resistance in particular and diabetes in general. "Given that NE mediates insulin resistance, one could, in theory, take an NE activity inhibitory approach to reverse or improve insulin resistance," Oh said, noting that NE inhibitors are already used for treatment of emphysema in Japan and are being tested in the United States, both for emphysema and type 1 diabetes.

Explore further: Improving obesity-induced insulin sensitivity

Related Stories

Improving obesity-induced insulin sensitivity

June 1, 2012
In recent years, a growing body of evidence has linked inflammation to the development of insulin resistance. In insulin resistance, the hormone insulin is less effective in promoting glucose uptake from the bloodstream into ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.