Treatment target for diabetes, Wolfram syndrome

August 7, 2012
The bright green spots are TXNIP molecules, potential treatment targets for diabetes and Wolfram syndrome. Credit: Urano lab

Inflammation and cell stress play important roles in the death of insulin-secreting cells and are major factors in diabetes. Cell stress also plays a role in Wolfram syndrome, a rare, genetic disorder that afflicts children with many symptoms, including juvenile-onset diabetes.

Now a molecule has been identified that's key to the cell stress-modulated that causes insulin cells to die, report scientists at Washington University School of Medicine in St. Louis, the University of Massachusetts Medical School in Worcester and elsewhere.

"There are two types of inflammation," says senior investigator Fumihiko Urano, MD, PhD. "There is local inflammation within cells that can be caused by a specific type of cell stress named . There's also systemic inflammation that involves the activation of . The molecule we've identified is involved in the initiation of local inflammation that can lead to ."

That molecule, called thioredoxin-interacting protein (TXNIP), provides scientists with a target to direct therapies for diabetes and Wolfram syndrome. The latter disorder causes kidney problems as well as hearing and . As patients get older, they develop ataxia, a that causes a loss of and coordination, and many patients die before their 40th birthday.

The new study is published Aug. 8 in the journal .

Wolfram syndrome is a rare disorder that causes insulin-dependent diabetes, kidney problems and vision and hearing loss, among other things. Now researchers at Washington University School of Medicine in St. Louis are reporting that they’ve identified a potential treatment target for Wolfram syndrome that also might help with diabetes. Jim Dryden reports… Credit: Washington University BioMed Radio

Urano, an associate professor of medicine in Washington University's Division of Endocrinology, Metabolism and Lipid Research, studies a type of cell stress known as (ER) stress. The endoplasmic reticulum is part of a cell that's responsible for producing proteins and synthesizing cholesterol. Every cell in the body has an endoplasmic reticulum, which also is involved in transporting proteins to the parts of the cell where they are needed.

In ER stress, misfolded proteins accumulate, activating a response in the cell designed to correct the problem by making fewer proteins and eliminating the misfolded ones. But if the stress cannot be resolved, the cells self destruct.

"The endoplasmic reticulum does many important things," Urano says. "When it doesn't function properly, it can contribute to several different diseases. In the case of Wolfram syndrome and diabetes, we believe that dysfunction within insulin-secreting cells causes ER stress, which, in turn, contributes to local inflammation and cell death."

Urano's team analyzed genes that were activated in insulin-producing cells under ER stress and found that TXNIP was manufactured in large amounts in the stressed cells. Past research demonstrated that the protein was involved in inflammation, and as experiments progressed, the researchers were able to link TXNIP both to ER stress within the cell and to inflammation outside of specific populations of cells that can have an effect throughout the body.

"We found that ER stress can lead to inflammation activation through the TXNIP protein," he says. "So if we could somehow block TXNIP, we may be able to mitigate the inflammation and block the progression of diabetes and Wolfram syndrome."

Urano has found that in animal models of Wolfram syndrome, TXNIP levels are significantly increased in insulin-secreting . Meanwhile, other recent research has discovered that a common blood pressure medication called verapamil can interfere with TXNIP production, so Urano's team plans to test that drug in animals with Wolfram syndrome to learn whether it might delay the progression of the disease. Those experiments, Urano says, are under way.

The TXNIP protein provides the best available target for therapies because the only other known molecule involved in cell death under ER stress conditions is housed in the cell nucleus, he says. TXNIP, on the other hand, exists outside the nucleus and therefore may more easily interact with potential therapeutic agents.

Although this study involves the extremely rare disorder Wolfram syndrome, which affects about one in 500,000 people, Urano says the findings may be important to many other diseases because inflammation contributes to so many disorders, from heart disease to cancer.

"Local inflammation such as ER stress can't be detected by looking for inflammatory molecules in blood plasma, but it is very important in the pathogenesis of many chronic human diseases," he says. "By studying TXNIP in Wolfram syndrome, we may be able to uncover clues for treating other chronic diseases, including neurodegenerative diseases, such as Alzheimer's disease and similar illnesses that cause cognitive problems."

Explore further: Researchers find beta cell stress could trigger the development of type 1 diabetes

More information: Oslowski CM, Hara T, O'Sullivan-Murphy B, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, Greiner DL, Kaufman RJ, Bortell R, Urano F. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through the initiation of the inflammasome. Cell Metabolism, vol. 16 (2), Aug. 8, 2012.

Related Stories

Researchers find beta cell stress could trigger the development of type 1 diabetes

March 22, 2012
In type 1 diabetes (T1D), pancreatic beta cells die from a misguided autoimmune attack, but how and why that happens is still unclear. Now, JDRF-funded scientists from the Indiana University School of Medicine have found ...

New tactic for controlling blood sugar in diabetes contradicts current view of the disease

September 4, 2011
Increased low-grade inflammation in the body resulting from obesity is widely viewed as contributing to type 2 diabetes. Going against this long-held belief, researchers from Children's Hospital Boston report that two proteins ...

Recommended for you

Breathing exercises help asthma patients with quality of life

December 13, 2017
A study led by the University of Southampton has found that people who continue to get problems from their asthma, despite receiving standard treatment, experience an improved quality of life when they are taught breathing ...

Study highlights the need for research into prevention of inflammatory bowel disease

December 7, 2017
Countries in Africa, Asia, the Middle East and South America have seen a rise in incidence of inflammatory bowel disease as they have become increasingly industrialised and westernised, a new study has found.

Air pollution can increase asthma risk in adults, even at low levels

November 24, 2017
Living close to a busy road can be bad for your respiratory health if you are middle aged, new Australian research has found.

Evidence found of oral bacteria contributing to bowel disorders

October 20, 2017
(Medical Xpress)—An international team of researchers has found evidence that suggests certain types of oral bacteria may cause or exacerbate bowel disorders. In their paper published in the journal Science, the group describes ...

New compound discovered in fight against inflammatory disease

September 22, 2017
A 10-year study by University of Manchester scientists for a new chemical compound that is able to block a key component in inflammatory illness has ended in success.

Asthma researchers test substance from coralberry leaves

September 14, 2017
The coralberry could offer new hope for asthmatics. Researchers at the University of Bonn have extracted an active pharmaceutical ingredient from its leaves to combat asthma, a widespread respiratory disease. In mice, it ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.