Brain neurons and diet influence onset of obesity and diabetes in mice

September 18, 2012

The absence of a specific type of neuron in the brain can lead to obesity and diabetes in mice report researchers in The EMBO Journal. The outcome, however, depends on the type of diet that the animals are fed.

A lack of AgRP-, known to be involved in the control of , leads to obesity if mice are fed a regular carbohydrate diet. However, animals that are deficient in AgRP-neurons but which are raised on a high-fat diet are leaner and healthier. The differences are due to the influence of the AgRP-neurons on the way other tissues in the body break down and store nutrients. Mice lacking AgRP-neurons adapt poorly to a carbohydrate diet and their metabolism seems better suited for feeding on fat.

"Susceptibility to obesity and other is mostly thought to be due to complex genetic interactions and the radical environmental changes that have occurred during the last century. However, it is not just a question of what you eat and your but also how the body manages to convert, store and use food nutrients," commented Serge Luquet, lead author of the study and a researcher at the French Centre National de la Recherche Scientifique (CNRS) Unit of Functional and Adaptive Biology, Université Paris Diderot, Sorbonne Paris Cité.

The scientists wanted to show if a primary setting in the brain might directly affect the relative balance that exists in peripheral tissue between storage, conversion and utilization of carbohydrate and lipids. "The idea that we wanted to test in our experiments was whether the action of a specific type of brain cell known as the AgRP-neuron extended beyond its known influence on food intake. We found a new function for these cells, one that affects the communication with and activities of other tissues in the body including the liver, muscle and the pancreas," added Luquet.

The researchers showed that mice that lacked AgRP-neurons from birth and which were fed on a regular had excessive body fat, increased amounts of the sugar-regulating hormone insulin, and normal levels of glucose in the blood. When the same animals were fed a high fat diet they showed a reduced gain in body weight and improved glucose clearance in the blood.

"Our work shows that central circuits in the brain that control food intake also control how nutrients are used in peripheral organs of the body," remarked Luquet. "This further role for AgRP-neurons might represent a core mechanism linking obesity and obesity-related diseases."

The prevalence of obesity and other metabolic diseases is increasing rapidly and effective and safe treatments are urgently needed. Obesity adversely affects health, decreases life expectancy, and increases the likelihood of other diseases including heart disease and type II diabetes. "Understanding the mechanisms by which the brain controls how nutrients are metabolized and stored in peripheral organs may prove essential to achieving a clinical breakthrough for these debilitating diseases," added Luquet.

Explore further: Why diets don't work? Starved brain cells eat themselves

More information: Joly, A., Denis, R., Castel, J., Lacombe, C, Cansell, C, Rouch.C, Kassis, N., Dairou, J., Cani, PD., Ventura-Clapier, R., Prola, A., Flamment, M., Foufelle, F.,Magnan, C., Luquet, S. (2012). Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. Accepted manuscript The EMBO J

Related Stories

Why diets don't work? Starved brain cells eat themselves

August 2, 2011
A report in the August issue of the Cell Press journal Cell Metabolism might help to explain why it's so frustratingly difficult to stick to a diet. When we don't eat, hunger-inducing neurons in the brain start eating bits ...

New brain target for appetite control identified

June 7, 2012
Researchers at Columbia University Medical Center (CUMC) have identified a brain receptor that appears to play a central role in regulating appetite. The findings, published today in the online edition of Cell, could lead ...

Study has shown to reverse obesity, body fat and improve insulin sensitivity in mice

April 13, 2012
(Medical Xpress) -- Scientists used the ACE inhibitor captopril (CAP)—commonly used for the treatment of hypertension and cardiac conditions—and found that it can reduce the body weight of mice maintained on a high-fat ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.