Brain neurons and diet influence onset of obesity and diabetes in mice

September 18, 2012

The absence of a specific type of neuron in the brain can lead to obesity and diabetes in mice report researchers in The EMBO Journal. The outcome, however, depends on the type of diet that the animals are fed.

A lack of AgRP-, known to be involved in the control of , leads to obesity if mice are fed a regular carbohydrate diet. However, animals that are deficient in AgRP-neurons but which are raised on a high-fat diet are leaner and healthier. The differences are due to the influence of the AgRP-neurons on the way other tissues in the body break down and store nutrients. Mice lacking AgRP-neurons adapt poorly to a carbohydrate diet and their metabolism seems better suited for feeding on fat.

"Susceptibility to obesity and other is mostly thought to be due to complex genetic interactions and the radical environmental changes that have occurred during the last century. However, it is not just a question of what you eat and your but also how the body manages to convert, store and use food nutrients," commented Serge Luquet, lead author of the study and a researcher at the French Centre National de la Recherche Scientifique (CNRS) Unit of Functional and Adaptive Biology, Université Paris Diderot, Sorbonne Paris Cité.

The scientists wanted to show if a primary setting in the brain might directly affect the relative balance that exists in peripheral tissue between storage, conversion and utilization of carbohydrate and lipids. "The idea that we wanted to test in our experiments was whether the action of a specific type of brain cell known as the AgRP-neuron extended beyond its known influence on food intake. We found a new function for these cells, one that affects the communication with and activities of other tissues in the body including the liver, muscle and the pancreas," added Luquet.

The researchers showed that mice that lacked AgRP-neurons from birth and which were fed on a regular had excessive body fat, increased amounts of the sugar-regulating hormone insulin, and normal levels of glucose in the blood. When the same animals were fed a high fat diet they showed a reduced gain in body weight and improved glucose clearance in the blood.

"Our work shows that central circuits in the brain that control food intake also control how nutrients are used in peripheral organs of the body," remarked Luquet. "This further role for AgRP-neurons might represent a core mechanism linking obesity and obesity-related diseases."

The prevalence of obesity and other metabolic diseases is increasing rapidly and effective and safe treatments are urgently needed. Obesity adversely affects health, decreases life expectancy, and increases the likelihood of other diseases including heart disease and type II diabetes. "Understanding the mechanisms by which the brain controls how nutrients are metabolized and stored in peripheral organs may prove essential to achieving a clinical breakthrough for these debilitating diseases," added Luquet.

Explore further: Why diets don't work? Starved brain cells eat themselves

More information: Joly, A., Denis, R., Castel, J., Lacombe, C, Cansell, C, Rouch.C, Kassis, N., Dairou, J., Cani, PD., Ventura-Clapier, R., Prola, A., Flamment, M., Foufelle, F.,Magnan, C., Luquet, S. (2012). Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. Accepted manuscript The EMBO J

Related Stories

Why diets don't work? Starved brain cells eat themselves

August 2, 2011
A report in the August issue of the Cell Press journal Cell Metabolism might help to explain why it's so frustratingly difficult to stick to a diet. When we don't eat, hunger-inducing neurons in the brain start eating bits ...

New brain target for appetite control identified

June 7, 2012
Researchers at Columbia University Medical Center (CUMC) have identified a brain receptor that appears to play a central role in regulating appetite. The findings, published today in the online edition of Cell, could lead ...

Study has shown to reverse obesity, body fat and improve insulin sensitivity in mice

April 13, 2012
(Medical Xpress) -- Scientists used the ACE inhibitor captopril (CAP)—commonly used for the treatment of hypertension and cardiac conditions—and found that it can reduce the body weight of mice maintained on a high-fat ...

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.