First study of clonal evolution in Maxillary Sinus Carcinoma

September 28, 2012

Knowing how tumors evolve can lead to new treatments that could help prevent cancer from recurring, according to a study published today by the Translational Genomics Research Institute (TGen) and Scottsdale Healthcare.

TGen researchers tracked several years of tumor evolution in a 47-year-old male patient with maxillary sinus (MSC), a rare cancer of the sinus cavities beneath the cheeks that often requires surgical removal that is disfiguring. Fewer than half of MSC patients live more than 5 years after diagnosis.

"The ability to characterize clonal evolution of this and identify its Achilles' heel can significantly impact treatment, leading to more personalized medicine," according to the study published today in the journal .

Clonal evolution refers to the often-rapid genetic changes that occur in , which continually mutate and, thus, frequently resist anti-cancer drug compounds intended to destroy them.

"If we can understand the genomic basis of how this cancer evolves, perhaps we can find new treatments that could help improve the longevity and quality of life for patients," said Dr. Glen Weiss, Clinical Associate Professor at TGen, and Director of Thoracic Oncology at Virginia G. Piper Clinical Trials at Scottsdale Healthcare, a partnership with TGen. Dr. Weiss is one of the study's senior co-authors.

MSC represents nearly four of every five cases of paranasal sinus cancers, which grow rapidly and invade nearby tissues but also are usually slow to spread to distant sites. Patients usually die from a local of the tumor, even after .

"This is the first report to study the clonal population of MSC arising in longitudinal samples from the same patient," the study said. "One of the aims of this study was to closely follow and the clonally evolving for molecular profiling and accumulation of data for future use in development of personalized treatment."

The patient in the study received conventional treatment, which included surgical removal of his tumors, radiation therapy and chemotherapy, and participation in a clinical trial.

Over time, however, the cancer spread to his upper right lung, lower left lung, left kidney, brain and part of his intestine. He eventually was hospitalized, received hospice care and prior to passing away gave permission to have his cancer studied after death in a rapid autopsy research program.

"Because his cancer resumed growth despite several courses of systemic chemotherapy and radiation therapy, we speculated that acquired secondary genetic changes evolved with the evolution of resistance to these therapies," said Dr. Michael Barrett, Associate Professor in TGen's Clinical Translational Research Division, and the study's other senior co-author.

Analysis of his tumors following surgeries, biopsies and autopsy revealed several genetic aberrations, including multiple copies of a region on chromosome 4q, which includes the KIT gene. KIT is an oncogene, a gene with the potential to cause cancer, and is a potential treatment target.

The authors suggest the results provide a unique description of how the drug resistant cancer cells replicate and progress to metastatic MSC. Additional findings included the loss of the gene PKP4, which is associated with increased tumor size.

"These results show that molecular analyses of patient samples can add to the information about the tumor and help us in tracking back the progression of the disease," the authors concluded. "Identification of selected , and the biological processes they regulate arising in primary MSC tumors, will advance individualizing therapy and improve the outcome of patients with rare cancers."

"These kinds of cutting-edge studies are made possible through the collaboration of major research and clinical practices, such as the partnership between and Scottsdale Healthcare," said Dr. Mark Slater, Vice President of Research at Scottsdale Healthcare.

The authors remain particularly grateful to the patient and his family for their contribution to understanding more about this type of cancer and hope this dissemination of knowledge may help others.

Scottsdale Healthcare, Scottsdale Medical Imaging, and Sun Health Research Institute at Banner Healthcare contributed to this study, which was funded by the IBIS Foundation of Arizona and by the Scottsdale Healthcare Foundation.

Explore further: Study targets non-small cell lung cancer

More information: dx.plos.org/10.1371/journal.pone.0045614

Related Stories

Study targets non-small cell lung cancer

August 29, 2012
A Phase I/II, multi-center trial designed to test the safety and preliminary efficacy of a first in class cancer treatment opened worldwide today at the Virginia G. Piper Cancer Center Clinical Trials at Scottsdale Healthcare, ...

Whole genome sequencing of rare olfactory neuroblastoma

May 23, 2012
The Translational Genomics Research Institute (TGen) and the Virginia G. Piper Cancer Center at Scottsdale Healthcare have conducted whole genome sequencing (WGS) of a rare nasal tract cancer called olfactory neuroblastoma ...

FDA approves new skin cancer drug

February 1, 2012
A new skin cancer drug tested for the first time in the world five years ago at the Virginia G. Piper Cancer Center at Scottsdale Healthcare just received expedited approval by the U.S. Food and Drug Administration, a remarkable ...

TGen, Virginia G. Piper Cancer Center studying new breast cancer drug

July 20, 2011
A new drug targeting the PI3K gene in patients with advanced breast cancer shows promising results in an early phase I investigational study conducted at Virginia G. Piper Cancer at Scottsdale Healthcare, according to a presentation ...

Recommended for you

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.