How does the brain measure time?

October 30, 2012

Researchers at the University of Minnesota's Center for Magnetic Resonance Research (CMRR) have found a small population of neurons that is involved in measuring time, which is a process that has traditionally been difficult to study in the lab.

In the study, which is published October 30 in the open access journal , the researchers developed a task in which could only rely on their internal sense of the passage of . Their task design eliminated all which could have served as "clocks".

The monkeys were trained to move their eyes consistently at regular time intervals without any external cues or immediate expectation of reward. Researchers found that despite the lack of sensory information, the monkeys were remarkably precise and consistent in their timed behaviors. This consistency could be explained by activity in a specific region of the brain called the lateral intraparietal area (LIP). Interestingly, the researchers found that LIP activity during their task was different from activity in previous studies that had failed to eliminate external cues or expectation of reward.

"In contrast to previous studies that observed a build-up of activity associated with the passage of time, we found that LIP activity decreased at a constant rate between timed movements," said lead researcher Geoffrey Ghose, Ph.D., associate professor of at the University of Minnesota. "Importantly, the animals' timing varied after these were more, or less, active. It's as if the activity of these neurons was serving as an internal hourglass."

By developing a model to help explain the differences in timing signals they see relative to previous studies, their study also suggests that there is no "central clock" in the brain that is relied upon for all tasks involving timing. Instead, it appears as though each of the brain's circuits responsible for different actions are capable of independently producing an accurate timing signal.

One important direction for future research is to explore how such precise timing signals arise as a consequence of practice and learning, and whether, when the signals are altered, there are clear effects on behavior.

Explore further: Aging brain gets stuck in time, researchers show

Related Stories

Aging brain gets stuck in time, researchers show

March 14, 2012
The aging brain loses its ability to recognize when it is time to move on to a new task, explaining why the elderly have difficulty multi-tasking, Yale University researchers report.

Neural balls and strikes: Where categories live in the brain

January 15, 2012
Hundreds of times during a baseball game, the home plate umpire must instantaneously categorize a fast-moving pitch as a ball or a strike. In new research from the University of Chicago, scientists have pinpointed an area ...

Distinguishing yourself from others

April 22, 2011
(Medical Xpress) -- Researchers in Japan have identified the specific nerve cells responsible for the ability to distinguish between the actions of self and others. The discovery lays the foundations for studying social learning ...

Recommended for you

Discovery deepens understanding of brain's sensory circuitry

December 12, 2017
Because they provide an exemplary physiological model of how the mammalian brain receives sensory information, neural structures called "mouse whisker barrels" have been the subject of study by neuroscientists around the ...

Intermittent fasting found to increase cognitive functions in mice

December 12, 2017
(Medical Xpress)—The Daily Mail spoke with the leader of a team of researchers with the National Institute on Aging in the U.S. and reports that they have found that putting mice on a diet consisting of eating nothing every ...

Neuroscientists show deep brain waves occur more often during navigation and memory formation

December 12, 2017
UCLA neuroscientists are the first to show that rhythmic waves in the brain called theta oscillations happen more often when someone is navigating an unfamiliar environment, and that the more quickly a person moves, the more ...

Stuttering: Stop signals in the brain disturb speech flow

December 12, 2017
One per cent of adults and five per cent of children are unable to achieve what most of us take for granted—speaking fluently. Instead, they struggle with words, often repeating the beginning of a word, for example "G-g-g-g-g-ood ...

How Zika virus induces congenital microcephaly

December 12, 2017
Epidemiological studies show that in utero fetal infection with the Zika virus (ZIKV) may lead to microcephaly, an irreversible congenital malformation of the brain characterized by an incomplete development of the cerebral ...

Selecting sounds: How the brain knows what to listen to

December 11, 2017
How is it that we are able—without any noticeable effort—to listen to a friend talk in a crowded café or follow the melody of a violin within an orchestra?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.