How does the brain measure time?

October 30, 2012

Researchers at the University of Minnesota's Center for Magnetic Resonance Research (CMRR) have found a small population of neurons that is involved in measuring time, which is a process that has traditionally been difficult to study in the lab.

In the study, which is published October 30 in the open access journal , the researchers developed a task in which could only rely on their internal sense of the passage of . Their task design eliminated all which could have served as "clocks".

The monkeys were trained to move their eyes consistently at regular time intervals without any external cues or immediate expectation of reward. Researchers found that despite the lack of sensory information, the monkeys were remarkably precise and consistent in their timed behaviors. This consistency could be explained by activity in a specific region of the brain called the lateral intraparietal area (LIP). Interestingly, the researchers found that LIP activity during their task was different from activity in previous studies that had failed to eliminate external cues or expectation of reward.

"In contrast to previous studies that observed a build-up of activity associated with the passage of time, we found that LIP activity decreased at a constant rate between timed movements," said lead researcher Geoffrey Ghose, Ph.D., associate professor of at the University of Minnesota. "Importantly, the animals' timing varied after these were more, or less, active. It's as if the activity of these neurons was serving as an internal hourglass."

By developing a model to help explain the differences in timing signals they see relative to previous studies, their study also suggests that there is no "central clock" in the brain that is relied upon for all tasks involving timing. Instead, it appears as though each of the brain's circuits responsible for different actions are capable of independently producing an accurate timing signal.

One important direction for future research is to explore how such precise timing signals arise as a consequence of practice and learning, and whether, when the signals are altered, there are clear effects on behavior.

Explore further: Aging brain gets stuck in time, researchers show

Related Stories

Aging brain gets stuck in time, researchers show

March 14, 2012
The aging brain loses its ability to recognize when it is time to move on to a new task, explaining why the elderly have difficulty multi-tasking, Yale University researchers report.

Neural balls and strikes: Where categories live in the brain

January 15, 2012
Hundreds of times during a baseball game, the home plate umpire must instantaneously categorize a fast-moving pitch as a ball or a strike. In new research from the University of Chicago, scientists have pinpointed an area ...

Distinguishing yourself from others

April 22, 2011
(Medical Xpress) -- Researchers in Japan have identified the specific nerve cells responsible for the ability to distinguish between the actions of self and others. The discovery lays the foundations for studying social learning ...

Recommended for you

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.