Inheritance of mitochondrial disease determined when mother is still an embryo

October 8, 2012

(Medical Xpress)—The risk of a child to inherit mitochondrial diseases - i. e. malfunction in what is usually referred to as the power plants of the cell - is largely decided when the future mother herself is still an embryo. This according to a novel study by scientists at Karolinska Institutet and the Max Planck Institute in Germany, which is published in the journal Nature Genetics.

Mitochondria are small structures within almost every cell in the body, responsible mainly for energy production and fat metabolism. Their function is very important, and they contain their own genome, called mitochondrial DNA (mtDNA). The is inherited via the mother, where hundreds of thousands of mtDNA copies are packed in the female germ cell.

"Mutations in the mitochondrial genome can cause a variety of severe diseases, such as muscle weakness, neurodegenerative diseases, heart disease and diabetes", says Christoph Freyer, one of the study authors. "Many of these diseases only develop once a certain ratio of mutant and normal mtDNA molecules is reached within the cell. It is therefore important that we learn more about how mtDNA is inherited from mother to child."

A mother carrying a mutation in her mitochondrial genome can pass on a mixture of normal and mutated mtDNA to her children, but what determines the levels inherited and the driving force behind this mechanism is poorly understood. In the current study in Nature Genetics, scientists generated a novel , carrying a pathogenic mutation in the mitochondrial tRNA methionine gene. This allowed the group to look at the ratio of mutated to non-mutated genes, or mutation level, in three different phases of the hereditary process. First they analysed germ cells from and established how the degree of mutation varies from germ cell to germ cell. After birth they looked at that degree in the immature of the mouse. And later they examined the degree of mutation in the mtDNA of the offspring.

The analysis shows, that in contrast to the protein-coding genes, shown by recent research to be subject to prenatal selection, tRNA genes are not selected out by the female germline. So whether and to what extent mutant genes can be transmitted to the next generation is decided when the future mother is still herself an embryo, during the development of her . Mutant genes often coexist with normal genes, a condition called heteroplasmy, in the affected egg cells. In other words, mutated and non-mutated genes occur in each egg cell in a particular ratio and thus the mutation may or may not be transmitted to the next generation. This also explains the differences arising within a family.

At the same time, the scientists note that the mitochondria in these mice try to compensate for the defect, giving further insight into the hereditary mechanisms underlying mitochondrial disease.

"Understanding the signals required for this compensation will potentially help in treating mitochondrial disease, which is very exciting", says Christoph Freyer.

Explore further: PGD can permit the birth of healthy children to women carrying mitochondrial DNA disease

More information: Freyer, C., et al. Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nature Genetics AOP 7 October 2012, doi: 10.1038/ng.2427

Related Stories

PGD can permit the birth of healthy children to women carrying mitochondrial DNA disease

May 30, 2011
Pre-implantation genetic diagnosis (PGD) can give women at risk of passing on a mitochondrial DNA disorder to their offspring a good chance of being able to give birth to an unaffected child, a researcher told the annual ...

How mitochondrial DNA defects cause inherited deafness

February 17, 2012
(Medical Xpress) -- Yale scientists have discovered the molecular pathway by which maternally inherited deafness appears to occur: Mitochondrial DNA mutations trigger a signaling cascade, resulting in programmed cell death. ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ScooterG
1 / 5 (1) Oct 08, 2012
Wouldn't the health insurance companies love to get their hands on all humans DNA?? That way they could more accurately tailor insurance rates according to risk - or deny you coverage all together.

In the case of government-controlled health care, you might be denied health service of any sort if you pose a large enough financial burden to the "system".

One presidential candidate wants the government to take over health care, and one doesn't. One candidate respects your health and genetic privacy, and one doesn't.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.