Noninvasive measurement enables use of IFP as potential biomarker for tumor aggressiveness

October 1, 2012

Researchers validated a method of noninvasive imaging that provides valuable information about interstitial fluid pressure of solid tumors and may aid in the identification of aggressive tumors, according to the results of a study published in Cancer Research, a journal of the American Association for Cancer Research.

Many malignant solid tumors generally develop a higher interstitial fluid pressure (IFP) than normal tissue. High IFP in tumors may cause a reduced uptake of chemotherapeutic agents and resistance to . In addition, a high IFP has been found to promote metastatic spread.

"Currently, an imaging method for noninvasive assessment of the IFP of tumors is needed to evaluate the potential of IFP as a biomarker for cancer aggressiveness and, hence, to identify patients with cancer who may benefit from particularly aggressive treatment because of highly elevated tumor IFP," said Einar K. Rofstad, Ph.D., of the department of radiation biology at the Institute for , Norwegian Radium Hospital, Oslo, Norway.

Rofstad and colleagues tested the use of dynamic contrast-enhanced (MRI) to evaluate the velocity of fluid flow from tumors in human cell lines of cervical carcinoma and melanoma implanted in mice. Researchers hypothesized that the velocity of fluid flow from tumor tissue into adjacent tissue was determined by the IFP drop at the tumor surface.

Results indicated that the velocity of the fluid flow at the tumor surface strongly correlated with the magnitude of the tumor IFP and that dynamic contrast-enhanced MRI with gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) as a contrast agent can be used to noninvasively measure the fluid-flow velocity. In addition, primary tumors of mice with metastases had a significantly higher IFP and fluid-flow velocity at the tumor surface compared with the primary tumors of metastasis-free mice, confirming that the development of lymph node metastases strongly correlated to the IFP of the primary tumor and the velocity of fluid flow as measured by Gd-DTPA-based dynamic contrast-enhanced MRI.

"Our findings establish that Gd-DTPA-based dynamic contrast-enhanced MRI can noninvasively visualize tumor IFP," Rofstad said. "This reveals the potential for the fluid-flow velocity at the tumor surface determined by this imaging method to serve as a novel general biomarker of tumor aggressiveness."

Rofstad said that comprehensive prospective clinical investigations in several types of cancer are needed to assess the value of fluid-flow velocity at the tumor surface level assessed by Gd-DTPA-based dynamic contrast-enhanced MRI as a general biomarker for interstitial hypertension-induced cancer aggressiveness.

Explore further: How the fluid between cells affects tumors

Related Stories

How the fluid between cells affects tumors

July 25, 2012
There are many factors that affect tumor invasion, the process where a tumor grows beyond the tissue where it first developed. While factors like genetics, tissue type and environmental exposure affect tumor metastasis and ...

MRI may be noninvasive method to measure breast cancer prognosis

December 8, 2011
Quantitative magnetic resonance imaging measures were associated with prognostic tumor markers, demonstrating the potential of magnetic resonance imaging for prediction of disease prognosis and stratification of patients ...

Researchers create cellular automation model to study complex tumor-host role in cancer

March 27, 2012
Cancer remains a medical mystery – despite all of the research efforts devoted to understanding and controlling it. The most sought-after tumor model is one that would be able to formulate theoretical and computational ...

Recommended for you

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.