New paper examines shifting gears in the circadian clock of the heart

October 23, 2012

A new study conducted by a team of scientists led by Giles Duffield, assistant professor of biological sciences and a member of the Eck Institute for Global Health at the University of Notre Dame focuses on the circadian clock of the heart, and used cultured heart tissue. The results of the new study have implications for cardiovascular health, including daily changes in responses to stress and the effect of long-term rotational shift work.

Previous studies by a research group at the University of Geneva demonstrated a role for glucocorticoids in shifting the biological clock, and characterized this effect in the liver.

The new Notre Dame study, which appears in Oct. 23 edition of journal , reveals that time-of-day specific treatment with a synthetic glucocorticoid, known as dexamethasone, could shift the of atria samples, but the time specific effect on the direction of the shifts was different from the liver. For example, when glucocorticoid treatment produces advances of the liver clock, in the atria it produces delays.

"We treated cardiac atrial explants around the clock and produced what is known as a phase response curve, showing the magnitude of the shifting of the clock dependent upon the time of day the treatment is delivered," Duffield said.

Glucocorticoids are produced by the adrenal cortex that then circulate in the blood and regulate aspects of and , amongst other things. (GRs) that are activated by the hormone, are found in many of our body's cells.

The researchers determined the temporal state of the by monitoring the rhythmic expression of period 1 and period 2 in living tissues derived from .

"Our data highlights the sensitivity of the body's major organs to GR signaling, and in particular the heart," Duffield said. "This could be problematic for users of synthetic , often used to treat chronic inflammation. Also the differences we observe between important organ systems such as the heart and liver might explain some of the internal disturbance to the synchrony between these tissues that contain their own internal clocks that can occur during shift-work and jet lag. For example, at some point in the time zone transition your brain might be in the time zone of Sydney Australia, your heart in Hawaii and your liver still in Los Angeles. It is important to note that approximately 16% of the US and European work forces undertake some form of shift work.

"Circadian biologists often are thought to be focused on finding a cure to actual 'jet lag', when in fact, certain types of shift work schedules are effectively producing a jet lag response in our body on a weekly basis, and therefore this chronically influences a large part of our population in the modern industrialized world." The other interesting finding was that even removing and replacing the chemically defined tissue growth media (including using the same medium sample), produced shifts of the circadian clock, although these were somewhat smaller shifts than those produced by the synthetic glucocorticoid treatment.

The authors make an interesting proposal: that these "media exchange" shifts are in part caused by mechanical stimulation to the produced by simply removing and replacing the very same media. Although the research is in its early phase, the hypothesis does highlight the potential for mechanical stretch of the atria to be a mechanism through which the circadian clock of the heart could be shifted to a new phase of the 24 hour day. There are in fact precedents for this, in that the walls of the cardiac atria already contain stretch receptors that are associated with the control of atrial natriuretic peptide hormone release.

"Least we forget, the heart by nature is mechanical, serving as the pump for the cardiovascular system," Duffield said.

Simple rigorous exercise in the healthy human or stress that can raise heart rate and increase cardiac stroke volume (through activation of the sympathetic nervous system), might produce such a phase shifting effect by acting through such a stretch mechanism. Further, this response is likely to be time of day specific, and the phase response curve to medium treatment that the authors generated in vitro would also predict at what time of the 24 hour day such shifts might occur. The authors are however cautious about the interpretation of their data, as much of this mechanical shift hypothesis has yet to be tested.

It is already know that the heart contains a cell autonomous and that there are changes across the 24 hour day in cardiac function such as tissue remodeling, what cultured heart muscle cells known as cardiomyocytes metabolize, and differences in responses to physiological demands. The incidence of cardiovascular illness changes over the 24 hour day, with most heart attacks occurring in the morning. Obviously the results of the new study have implications for , including daily changes in responses to stress and the effect of long-term rotational shift work.

"Put simply, many of our organ systems, specialized in their own way to serve particular functions, are effectively different in their activities and responses across the 24 hour day," said Duffield. "The circadian clock controls these rhythmic processes in each cell and tissue. The components of our body such as the heart, liver and brain, can be divided up as to function differentially not only in a spatial sense but also temporally."

Duffield, the scientific team principle investigator, stressed that the work was a team effort and highlights the important contributions of postdoctoral researcher Daan van der Veen, now a lecturer at the University of Surrey (United Kingdom), and visiting graduate students from Nankai University (P.R. China), Yang Xi and Jinping Shao, who is now a lecturer at Zhengzhou University School of Medicine. The work was funded by grants from the American Heart Association and the National Institute for General Medical Sciences.

Explore further: Body clock genes unravelled

More information: PLoS ONE doi: 10.1371/journal.pone.0047692

Related Stories

Body clock genes unravelled

May 3, 2012
International travellers, shift workers and even people suffering from obesity-related conditions stand to benefit from a key discovery about the functioning of the body's internal clock.

Coordinating the circadian clock: Researchers find that molecular pair controls time-keeping and fat metabolism

April 4, 2012
(PhysOrg.com) -- The 24-hour internal clock controls many aspects of human behavior and physiology, including sleep, blood pressure, and metabolism. Disruption in circadian rhythms leads to increased incidence of many diseases, ...

Recommended for you

Could this protein protect people against coronary artery disease?

November 17, 2017
The buildup of plaque in the heart's arteries is an unfortunate part of aging. But by studying the genetic makeup of people who maintain clear arteries into old age, researchers led by UNC's Jonathan Schisler, PhD, have identified ...

Raising 'good' cholesterol fails to protect against heart disease

November 16, 2017
Raising so-called 'good' cholesterol by blocking a key protein involved in its metabolism does not protect against heart disease or stroke, according to a large genetic study of 150,000 Chinese adults published in the journal ...

New model estimates odds of events that trigger sudden cardiac death

November 16, 2017
A new computational model of heart tissue allows researchers to estimate the probability of rare heartbeat irregularities that can cause sudden cardiac death. The model, developed by Mark Walker and colleagues from Johns ...

Popular e-cigarette liquid flavorings may change, damage heart muscle cells

November 16, 2017
Chemicals used to make some popular e-cigarette liquid flavorings—including cinnamon, clove, citrus and floral—may cause changes or damage to heart muscle cells, new research indicates.

Possible use for botulinum toxin to treat atrial fibrillation

November 16, 2017
From temporarily softening wrinkles to easing migraines, botulinum toxin has become a versatile medical remedy because of its ability to block nerve signals that can become bothersome or risky.

Proteome of the human heart mapped for the first time

November 15, 2017
A healthy heart beats about two billion times during a lifetime, thanks to the interplay of more than 10,000 proteins. Researchers from the Max Planck Institute of Biochemistry (MPIB) and the German Heart Centre at the Technical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.