Scientists identify 5 genes that determine facial shape

October 11, 2012
Scientists identify genes and facial shape connection
Credit: Shutterstock

(Medical Xpress)—European researchers have discovered that five genes play a key role in determining human facial shapes. Presented in the journal PLoS Genetics, the genome-wide association study on facial phenotype can help scientists identify more genes for other complex human phenotypes, including height.

The research can help advance understanding of the complex governing normal and pathological differences in facial shape (when combined with sophisticated three-dimensional imaging techniques).

The study was partially funded by the GEFOS, ENGAGE and GENOMEUTWIN projects. GEFOS (' for osteoporosis') and ENAGE ('European network for genetic and genomic epidemiology') are both funded under the Health Theme of the EU's Seventh Framework Programme (FP7) to the tune of EUR 3 million and EUR 12 million, respectively. GENOMEUTWIN ('Genome-wide analyses of European twin and population cohorts to identify genes in ') received over EUR 13.6 million under the 'Quality of life and management of the living resources' Thematic programme of the Fifth Framework Programme (FP5). The project used European strengths in genetics, epidemiology and biocomputing to identify critical genetic and .

We all know that the faces of are hugely similar. Siblings also have more similar faces than people who are not related to one another. So, genes are a big part of how the human face appears. But there has been a lack of research into the role genes play in facial morphology in humans.

Enter scientists from Australia, Canada, Germany, the Netherlands and the United Kingdom who performed this latest study, on behalf of the International Visible Trait Genetics (VisiGen) consortium. They used head together with portrait photographs to map facial landmarks, from which facial distances were estimated. They later applied a genome-wide association (GWA) approach, with independent replication, and identified deoxyribonucleic acid (DNA) variants involved in facial shapes in almost 10,000 people.

Three of the five genes the team identified were already implicated by other approaches in vertebrate craniofacial development and disease. One of these three was reported to be involved in facial morphology in a GWA study on children published earlier this year. The researchers said the other two genes may represent completely new players in the molecular networks governing facial development.

'These are exciting first results that mark the beginning of the genetic understanding of human facial morphology,' said lead author Professor Manfred Kayser from the Erasmus University Medical Center in the Netherlands. 'Perhaps some time it will be possible to draw a phantom portrait of a person solely from his or her DNA left behind, which provides interesting applications such as in forensics. We already can predict from DNA certain eye and hair colours with quite high accuracies.'

Explore further: Five genes have been found to determine human facial shapes

More information: Liu, F. et al., 'A genome-wide association study identifies five loci influencing facial morphology in Europeans', PLoS Genetics, 2012; 8 (9): e1002932. doi:10.1371/journal.pgen.1002932

Related Stories

Five genes have been found to determine human facial shapes

September 13, 2012
Five genes have been found to determine human facial shapes, as reported by researchers from the Netherlands, Germany, Canada, the United Kingdom, and Australia in the open-access journal PLOS Genetics.

Researchers pinpoint genetic pathway of rare facial malformation in children

May 3, 2012
Researchers at Seattle Children's Research Institute and their collaborators have discovered a pair of defective genes that cause a rare congenital malformation syndrome that can make it impossible for the child to breathe ...

Recommended for you

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

A new approach to high insulin levels

September 18, 2017
Diabetes is characterised by a deficiency of insulin. Its opposite is a condition called congenital hyperinsulinism—patients produce the hormone too frequently and in excessive quantities, even if they haven't eaten any ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.