Scientists identify 5 genes that determine facial shape

October 11, 2012
Scientists identify genes and facial shape connection
Credit: Shutterstock

(Medical Xpress)—European researchers have discovered that five genes play a key role in determining human facial shapes. Presented in the journal PLoS Genetics, the genome-wide association study on facial phenotype can help scientists identify more genes for other complex human phenotypes, including height.

The research can help advance understanding of the complex governing normal and pathological differences in facial shape (when combined with sophisticated three-dimensional imaging techniques).

The study was partially funded by the GEFOS, ENGAGE and GENOMEUTWIN projects. GEFOS (' for osteoporosis') and ENAGE ('European network for genetic and genomic epidemiology') are both funded under the Health Theme of the EU's Seventh Framework Programme (FP7) to the tune of EUR 3 million and EUR 12 million, respectively. GENOMEUTWIN ('Genome-wide analyses of European twin and population cohorts to identify genes in ') received over EUR 13.6 million under the 'Quality of life and management of the living resources' Thematic programme of the Fifth Framework Programme (FP5). The project used European strengths in genetics, epidemiology and biocomputing to identify critical genetic and .

We all know that the faces of are hugely similar. Siblings also have more similar faces than people who are not related to one another. So, genes are a big part of how the human face appears. But there has been a lack of research into the role genes play in facial morphology in humans.

Enter scientists from Australia, Canada, Germany, the Netherlands and the United Kingdom who performed this latest study, on behalf of the International Visible Trait Genetics (VisiGen) consortium. They used head together with portrait photographs to map facial landmarks, from which facial distances were estimated. They later applied a genome-wide association (GWA) approach, with independent replication, and identified deoxyribonucleic acid (DNA) variants involved in facial shapes in almost 10,000 people.

Three of the five genes the team identified were already implicated by other approaches in vertebrate craniofacial development and disease. One of these three was reported to be involved in facial morphology in a GWA study on children published earlier this year. The researchers said the other two genes may represent completely new players in the molecular networks governing facial development.

'These are exciting first results that mark the beginning of the genetic understanding of human facial morphology,' said lead author Professor Manfred Kayser from the Erasmus University Medical Center in the Netherlands. 'Perhaps some time it will be possible to draw a phantom portrait of a person solely from his or her DNA left behind, which provides interesting applications such as in forensics. We already can predict from DNA certain eye and hair colours with quite high accuracies.'

Explore further: Five genes have been found to determine human facial shapes

More information: Liu, F. et al., 'A genome-wide association study identifies five loci influencing facial morphology in Europeans', PLoS Genetics, 2012; 8 (9): e1002932. doi:10.1371/journal.pgen.1002932

Related Stories

Five genes have been found to determine human facial shapes

September 13, 2012
Five genes have been found to determine human facial shapes, as reported by researchers from the Netherlands, Germany, Canada, the United Kingdom, and Australia in the open-access journal PLOS Genetics.

Researchers pinpoint genetic pathway of rare facial malformation in children

May 3, 2012
Researchers at Seattle Children's Research Institute and their collaborators have discovered a pair of defective genes that cause a rare congenital malformation syndrome that can make it impossible for the child to breathe ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.