Research identifies new therapeutic target for Alzheimer's disease

November 1, 2012, Louisiana State University

Research led by Chu Chen, PhD, Associate Professor of Neuroscience at LSU Health Sciences Center New Orleans, has identified an enzyme called Monoacylglycerol lipase (MAGL) as a new therapeutic target to treat or prevent Alzheimer's disease. The study was published online November 1, 2012 in the Online Now section of the journal Cell Reports.

The research team found that inactivation of MAGL, best known for its role in degrading a cannabinoid produced in the brain, reduced the production and accumulation of beta , a pathological hallmark of Alzheimer's disease. Inhibition of this enzyme also decreased neuroinflammation and neurodegeneration, and improved plasticity of the brain, learning and memory.

"Our results suggest that MAGL contributes to the cause and development of Alzheimer's disease and that blocking MAGL represents a promising ," notes Dr. Chu Chen, who is also a member of the Department of Otolaryngology at LSU Health Sciences Center New Orleans.

The researchers blocked MAGL with a highly selective and potent inhibitor in mice using different dosing regimens and found that inactivation of MAGL for eight weeks was sufficient to decrease production and deposition of beta amyloid plaques and the function of a gene involved in making beta amyloid toxic to . They also measured indicators of neuroinflammation and neurodegeneration and found them suppressed when MAGL was inhibited. The team discovered that not only did the integrity of the structure and function of synapses associated with cognition remain intact in treated mice, but MAGL inactivation appeared to promote spatial , measured with behavioral testing.

Alzheimer's disease is a characterized by accumulation and deposition of amyloid plaques and neurofibrillary tangles, neuroinflammation, synaptic dysfunction, of cognitive function and in association with widespread nerve cell death. The most common cause of dementia among older people, more than 5.4 million people in the United States and 36 million people worldwide suffer with Alzheimer's disease in its various stages. Unfortunately, the few drugs that are currently approved by the Food and Drug Administration have demonstrated only modest effects in modifying the clinical symptoms for relatively short periods, and none has shown a clear effect on disease progression or prevention.

"There is a great public health need to discover new therapies to prevent and treat this devastating disorder," Dr. Chen concludes. The research was supported by grants from the National Institutes of Health. In addition to scientists from LSU Health Sciences Center New Orleans, the research team also included investigators from the Massachusetts Institute of Technology.

Explore further: Road block as a new strategy for the treatment of Alzheimer's

Related Stories

Road block as a new strategy for the treatment of Alzheimer's

August 22, 2011
Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception ...

Inflammatory mediator enhances plaque formation in Alzheimer's disease

September 7, 2011
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that causes progressive cognitive impairment and memory loss. Now, a new study published by Cell Press in the September 8 issue of the journal Neuron identifies ...

Researchers identify new enzyme to fight Alzheimer's disease

September 17, 2012
An enzyme that could represent a powerful new tool for combating Alzheimer's disease has been discovered by researchers at Mayo Clinic in Florida. The enzyme—known as BACE2—destroys beta-amyloid, a toxic protein fragment ...

Recommended for you

Does diabetes damage brain health?

December 14, 2018
(HealthDay)—Diabetes has been tied to a number of complications such as kidney disease, but new research has found that older people with type 2 diabetes can also have more difficulties with thinking and memory.

Amyloid pathology transmission in lab mice and historic medical treatments

December 13, 2018
A UCL-led study has confirmed that some vials of a hormone used in discontinued medical treatments contained seeds of a protein implicated in Alzheimer's disease, and are able to seed amyloid pathology in mice.

Study links slowed brainwaves to early signs of dementia

December 13, 2018
To turn back the clock on Alzheimer's disease, many researchers are seeking ways to effectively diagnose the neurodegenerative disorder earlier.

New discoveries predict ability to forecast dementia from single molecule

December 11, 2018
Scientists who recently identified the molecular start of Alzheimer's disease have used that finding to determine that it should be possible to forecast which type of dementia will develop over time—a form of personalized ...

Researchers classify Alzheimer's patients in six subgroups

December 5, 2018
Researchers studying Alzheimer's disease have created an approach to classify patients with Alzheimer's disease, a finding that may open the door for personalized treatments.

Neuroscientists pinpoint genes tied to dementia

December 3, 2018
A UCLA-led research team has identified genetic processes involved in the neurodegeneration that occurs in dementia—an important step on the path toward developing therapies that could slow or halt the course of the disease. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.