Novel studies of gene regulation in brain development may mean new treatment of mental disorders

December 2, 2012

(Phys.org)—A team of researchers at the University of California, San Diego and the Institut Pasteur, Paris has come up with a novel way to describe a time-dependent brain development based on coherent–gene-groups (CGGs) and transcription-factors (TFs) hierarchy. The findings could lead to new drug designs for mental disorders such as autism-spectrum disorders (ASD) and schizophrenia.

In the paper, published November 22 as an online-first publication in the journal Genes, Brain and Behavior, the researchers identified the hierarchical tree of CGG–TF networks that determine the patterns of genes expressed during brain development and found that some "master " at the top level of the hierarchy regulated the expression of a significant number of gene groups.

Instead of a taking the approach that a single gene creates a single response, researchers used contemporary methods of data analysis, along with the Gordon supercomputer at the university's (SDSC), to identify CGGs responsible for brain development which can be affected for treatment of mental disorders. The team found that these groups of genes act in concert to send signals at various levels of the hierarchy to other groups of genes, which control the general and more specific (depending of the level) events in development.

"We have proposed a novel, though still hypothetical, strategy of drug design based on this hierarchical network of TFs that could pave the way for a new category of pharmacological agents that could be used to block a pathway at a critical time during brain development as an effective way to treat and even prevent mental disorders such as and schizophrenia," said lead author Igor Tsigelny, a research scientist with SDSC, as well as the university's Moores and Department of Neurosciences. "On a broader scale, these findings have the potential to change the paradigm of drug design."

Using samples taken from three different regions of the brains of rats, the researchers used Gordon and SDSC's BiologicalNetworks server to conduct numerous levels of analysis, starting with processing of microarray data and SOM (self-organizing maps) clustering, before determining which gene zones were associated with significant developmental changes and brain disorders.

Researchers then conducted analyses of stages of development and quick comparisons between rat and human , in addition to pathway analyses and functional and hierarchical network analyses. The team then analyzed specific gene–TF interactions, with a focus on neurological disorders, before investigating further directions for drug design based on analysis of the hierarchical networks.

Explore further: Found in the developing brain: Mental health risk genes and gender differences

More information: A Hierarchical Coherent-Gene-Group Model for Brain Development, Genes, Brain and Behavior, 2012.

Related Stories

Found in the developing brain: Mental health risk genes and gender differences

October 26, 2011
Most genes associated with psychiatric illnesses are expressed before birth in the developing human brain, a massive study headed by Yale University researchers discovered. In addition, hundreds of genetic differences were ...

By reprogramming skin cells into brain cells, scientists gain new insights into mental disorders

October 12, 2011
For many poorly understood mental disorders, such as schizophrenia or autism, scientists have wished they could uncover what goes wrong inside the brain before damage ensues.

Single protein targeted as the root biological cause of several childhood psychiatric disorders

October 31, 2012
A new research discovery has the potential to revolutionize the biological understanding of some childhood psychiatric disorders. Specifically, scientists have found that when a single protein involved in brain development, ...

Study: Common gene mutation affects kids with autism spectrum disorders

September 14, 2012
(Medical Xpress)—Over the past decade, researchers have made great strides in identifying genes that lead to an increased risk of autism spectrum disorders (ASD), which result in a continuum of social deficits, communication ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.