Novel studies of gene regulation in brain development may mean new treatment of mental disorders

(Phys.org)—A team of researchers at the University of California, San Diego and the Institut Pasteur, Paris has come up with a novel way to describe a time-dependent brain development based on coherent–gene-groups (CGGs) and transcription-factors (TFs) hierarchy. The findings could lead to new drug designs for mental disorders such as autism-spectrum disorders (ASD) and schizophrenia.

In the paper, published November 22 as an online-first publication in the journal Genes, Brain and Behavior, the researchers identified the hierarchical tree of CGG–TF networks that determine the patterns of genes expressed during brain development and found that some "master " at the top level of the hierarchy regulated the expression of a significant number of gene groups.

Instead of a taking the approach that a single gene creates a single response, researchers used contemporary methods of data analysis, along with the Gordon supercomputer at the university's (SDSC), to identify CGGs responsible for brain development which can be affected for treatment of mental disorders. The team found that these groups of genes act in concert to send signals at various levels of the hierarchy to other groups of genes, which control the general and more specific (depending of the level) events in development.

"We have proposed a novel, though still hypothetical, strategy of drug design based on this hierarchical network of TFs that could pave the way for a new category of pharmacological agents that could be used to block a pathway at a critical time during brain development as an effective way to treat and even prevent mental disorders such as and schizophrenia," said lead author Igor Tsigelny, a research scientist with SDSC, as well as the university's Moores and Department of Neurosciences. "On a broader scale, these findings have the potential to change the paradigm of drug design."

Using samples taken from three different regions of the brains of rats, the researchers used Gordon and SDSC's BiologicalNetworks server to conduct numerous levels of analysis, starting with processing of microarray data and SOM (self-organizing maps) clustering, before determining which gene zones were associated with significant developmental changes and brain disorders.

Researchers then conducted analyses of stages of development and quick comparisons between rat and human , in addition to pathway analyses and functional and hierarchical network analyses. The team then analyzed specific gene–TF interactions, with a focus on neurological disorders, before investigating further directions for drug design based on analysis of the hierarchical networks.

More information: A Hierarchical Coherent-Gene-Group Model for Brain Development, Genes, Brain and Behavior, 2012.

Journal information: Genes, Brain and Behavior
Citation: Novel studies of gene regulation in brain development may mean new treatment of mental disorders (2012, December 2) retrieved 29 March 2024 from https://medicalxpress.com/news/2012-12-gene-brain-treatment-mental-disorders.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Found in the developing brain: Mental health risk genes and gender differences

 shares

Feedback to editors