Identification of developmental 'master switch' helps scientists explore function of infection-preventing cells

December 14, 2012
Fluorescent labeling of GP2, a protein expressed in M cells (left) reveals that this cell population is virtually absent in mice lacking the gene encoding Spi-B (right). Credit: 2012 Nature Publishing Group

Every bite of food or drink of water is an invitation for potentially harmful bacteria and viruses to set up shop in the body. In order to protect against such invaders, the mucous membrane that lines the intestine contains clusters of specialized microfold cells (M cells), which can absorb foreign proteins and particles from the digestive tract and deliver them to the immune system.

New work from Hiroshi Ohno's group at the RIKEN Center for Allergy and Immunology in Yokohama, in collaboration with Ifor Williams and colleagues at Emory University in Atlanta, Georgia, has revealed valuable insights into how these M cells develop. Previous research from Williams' group showed that a signaling protein called RANKL switches on M cell development but virtually nothing was known about the subsequent steps in this process. To find out, Ohno and Williams looked for genes that get switched on when undergo differentiation in response to RANKL exposure.

They discovered that treatment with RANKL causes immature to sharply increase the production of Spi-B, a protein that regulates the expression of other . To test the specific contribution of this protein to M cell maturation, the researchers collaborated with Tsuneyasu Kaisho's group at Osaka University, which had engineered a genetically-modified mouse strain lacking the gene encoding Spi-B. The resulting animals were devoid of mature M cells. On the other hand, intestinal development as a whole was unaffected by the absence of Spi-B, demonstrating that this protein's impact is limited to this specific class of cells within the gut.

M cells normally localize to immune structures known as Peyer's patches (PPs). Bacteria such as Typhimurium (S. Typhimurium) will normally accumulate within these PPs shortly after inoculation. This uptake was considerably reduced in Spi-B-deficient mice, indicating the absence of a functional M . The mice showed a considerably weakened immune response following oral administration of S. Typhimurium bacteria relative to wild-type animals, demonstrating the importance of M cell-mediated microbial uptake.

The identification of this critical 'master switch' for M cell development opens exciting new avenues of research into these mysterious cells. Ohno is eager to investigate the details of how the cells perform their critical immunity-training function. "These questions could not be answered previously because of the lack of M cell-deficient mice," he says. "But now, 'knockout' mice that specifically lack Spi-B in their mucosal epithelium will provide the ideal tool for such studies."

Explore further: Control gene for 'conveyor belt' cells could help improve oral vaccines, treat intestinal disease

More information: Kanaya, T., Hase, K., Takahashi, D., Fukuda, S., Hoshino, K., Sasaki, I., Hemmi, H., Knoop, K.A., Kumar, N., Sato M. et al. The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nature Immunology 13, 729–736 (2012). www.nature.com/ni/journal/v13/n8/abs/ni.2352.html

Knoop, K.A., Kumar, N., Butler, B.R., Sakthivel, S.K., Taylor, R.T., Nochi, T., Akiba, H., Yagita, H., Kiyono, H. & Williams, I.R. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. The Journal of Immunology 183, 5738–5747 (2009). www.jimmunol.org/content/183/9/5738.abstract

Related Stories

Control gene for 'conveyor belt' cells could help improve oral vaccines, treat intestinal disease

June 17, 2012
Scientists have found a master regulator gene needed for the development of M cells, a mysterious type of intestinal cell involved in initiating immune responses.

Scientists unmask mysterious cells as key 'border patrol agents' in the intestine

May 9, 2011
Researchers at UT Southwestern Medical Center have uncovered new clues about how the intestine maintains friendly relations with the 100 trillion symbiotic bacteria that normally live in the digestive tract.

Researchers find gut bacteria teaches immune cells to see them as friendly

September 22, 2011
(Medical Xpress) -- Most people know that the gut (human or otherwise) has bacteria in it that helps in the proper digestion of food. But how these bacteria manage to evade destruction by the immune system has been a mystery. ...

Recommended for you

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

Scientists identify gene that controls immune response to chronic viral infections

August 15, 2017
For nearly 20 years, Tatyana Golovkina, PhD, a microbiologist, geneticist and immunologist at the University of Chicago, has been working on a particularly thorny problem: Why are some people and animals able to fend off ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.