Control gene for 'conveyor belt' cells could help improve oral vaccines, treat intestinal disease

June 17, 2012

Scientists have found a master regulator gene needed for the development of M cells, a mysterious type of intestinal cell involved in initiating immune responses.

M act like "conveyor belts," ingesting bacteria and transporting substances from the gut into Peyer's patches, specialized tissues resembling lymph nodes in the intestines. Better knowledge of M cells' properties could aid research on oral vaccines and inflammatory bowel diseases.

A team of researchers at Emory University School of Medicine and RIKEN Research Center for Allergy and Immunology in Japan has identified the gene Spi-B as responsible for the differentiation of M cells.

The results are published Sunday, June 17 in the journal .

"This discovery could really unlock a lot of information about the sequence of events needed for M cells to develop and what makes them distinctive," says co-author Ifor Williams, MD, PhD, associate professor of pathology and laboratory medicine at Emory University School of Medicine. "M cells have been difficult to study because they are relatively rare, they are only found within the Peyer's patches and can't be grown in isolation."

Scientists at RIKEN, led by senior author Hiroshi Ohno, MD, PhD, teamed up with Williams' laboratory, taking advantage of a discovery by Williams that a protein called RANKL, which is produced by cells in Peyer's patches, can induce M . Research scientist Takashi Kanaya is first author of the paper.

Kanaya and colleagues found that the gene Spi-B is turned on strongly at early stages of M cell differentiation induced by RANKL. Their suspicion of Spi-B's critical role was confirmed when they discovered that mice lacking Spi-B do not have functional M cells, and the cells in the intestines lack several other markers usually found on M cells.

"It was somewhat surprising to find Spi-B expressed in intestinal epithelial cells," Williams says. "Because Spi-B is known to be important for the development of some types of immune cells, it was thought to be expressed only in bone marrow-derived cells."

In fact, the M cells in Spi-B deficient mice can't be restored by a transplant of normal bone marrow, the researchers found. That means Spi-B has to be active in (not immune cells) for M cells to develop.

Williams says information about M cells – in particular, what molecules they have on their surfaces – could be useful for targeting oral vaccines. Most vaccines in use today are administered by injection. But immunologists believe that in some cases, it may be better to deliver vaccines through the mouth or nose, thus strengthening the body's defenses where an infection starts.

Because M cells are involved in the uptake of bacteria, the study of M cells could also guide development of treatments for inflammatory bowel diseases, in which immune responses to intestinal bacteria appear to become dysregulated.

Explore further: Research identifies genes vital to preventing childhood leukemia

More information: T. Kanaya et al. The Ets Transcription Factor Spi-B Is Essential for the Differentiation of Intestinal Microfold (M) Cells. Nat. Immunol. (2012) doi:10.1038/ni.2352

Related Stories

Research identifies genes vital to preventing childhood leukemia

July 18, 2011
Researchers at The University of Western Ontario have identified genes that may be important for preventing childhood leukemia. Acute lymphoblastic leukemia (ALL) is a cancer of the blood that occurs primarily in young children. ...

Gastrointestinal inflammation prevented by protein sorting factor found in cells lining the gut

October 14, 2011
The gastrointestinal tract is lined with intestinal epithelial cells (IECs) that maintain gut health by keeping bacteria and pro-inflammatory immune cells from infiltrating gut tissues. Now, a team of researchers in Japan ...

Recommended for you

Immunotherapy drug nearly eliminates severe acute graft-versus-host disease

December 9, 2017
Results from a phase 2 clinical trial, presented by Seattle Children's Research Institute at the 59th American Society of Hematology (ASH) Annual Meeting, show that the drug Abatacept (Orencia) nearly eliminated life-threatening ...

Location, location, location: Immunization delivery site matters

December 1, 2017
In vaccination, a certain subpopulation of dendritic cells is vital to triggering the body's adaptive immune system, report researchers at The Jackson Laboratory (JAX), Yale University and Astra-Zeneca.

An anti-aging protein could be targeted to rejuvenate immune cells

November 30, 2017
Anti-aging proteins have long been shown to protect against age-related diseases, such as cancer, neurodegeneration, and cardiovascular disease. A study by researchers at the Gladstone Institutes now reveals that one such ...

Scientists find key to miscarriages in blood clotting disorder

November 28, 2017
Monash University researchers have potentially shed light on why women with the rare autoimmune disorder Antiphospholipid syndrome (APS) are prone to successive pregnancy losses.

How do cells release IL-1? After three decades, now we know

November 28, 2017
Researchers at Boston Children's Hospital have identified, for the first time, the molecule that enables immune cells to release interleukin-1 (IL-1), a key part of our innate immune response to infections. Findings were ...

Why do more women have asthma than men? Blame hormones

November 28, 2017
Women are twice as likely as men to have asthma, and this gender difference may be caused by the effects of sex hormones on lung cells. Researchers at Vanderbilt University and Johns Hopkins found that testosterone hindered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.