Study offers insights into role of muscle weakness in Down syndrome

December 17, 2012

It is well known that people with Down syndrome (DS) suffer from marked muscle weakness. Even the simple tasks of independent living, such as getting out of a chair or climbing a flight of stairs, can become major obstacles. This can reduce the quality of life for those with DS and lead to a loss of independence. Now, a new study sheds light on some of the suspected causes of muscle weakness.

Led by scientists from Syracuse University, a research team has investigated muscle weakness in a of DS. "If we understand the cause of this muscle weakness, we can begin to look at potential therapies for treating it," said Patrick M. Cowley, lead researcher.

The investigators analyzed the soleus muscle—a muscle in the lower leg—and looked into whether the weakness was due to a deficiency of the muscle itself, independent of its activation by the .

"Surprisingly, we found that the strength of the muscle itself was the same between the DS and —suggesting that factors in the nervous system may play a more dominant role in explaining muscle weakness in DS," said Cowley.

The article is entitled "Functional and Biochemical Characterization of the Soleus Muscle in Down Syndrome Mice: Insight into the Muscle Dysfunction Seen in the Human Condition," (http://bit.ly/TXsmby) It appears in the online edition of the – Regulatory, Integrative and Comparative Physiology published by the (APS).

Methodology

The researchers removed soleus muscles from 14 DS mice and 16 controls. They tested the muscles for strength, fatigue and recovery. They also assessed the distribution of fiber types in muscles from both groups.

Because there are three copies instead of two of in persons with DS, the researchers looked at whether the additional genes caused over-expression of proteins that could then lead to oxidative stress. They also looked for well-known markers of oxidative injury.

A cell-level deficiency in processing of oxygen might also explain the muscle weakness. To determine if this was the case, the researchers tested for the level of two markers for oxidative capacity in the mitochondria, where oxygen metabolism takes place in cells.

Finally, the researchers used microarray analysis to investigate the gene expression and molecular pathways in the muscles of DS mice.

Results

There were no significant differences in the force production of the muscles between the two groups. This finding means that muscle weakness in DS was not due to inherent differences in muscle force generating capacity. Fatigability of the muscle from DS mice was not different from the controls. It did, however, show impaired recovery. There were no significant differences in muscle fiber types between the groups.

While one marker of the cells' ability to process oxygen was lower in DS mice, the other was similar in both groups, meaning that there was not a clear indication of mitochondrial limitation that could explain muscle weakness in DS.

Finally, the researchers found that SOD1, an important antioxidant, was overexpressed in DS mice. This was not a surprise because the gene for SOD1 is tripled in DS. However, there was no increase in markers of oxidative injury, suggesting that this over-expression did not led to oxidative stress in DS muscle.

There were numerous altered pathways in DS muscle revealed by microarray analysis including the breakdown of proteins, metabolism of glucose and fat, and neuromuscular transmission.

Importance of the Findings

This study shows the importance of better understanding in DS. Interestingly, the study found that the weakness was not due to a deficiency in the muscle itself. This may indicate that neural activation of the muscle plays a greater role in explaining weakness in persons with DS. "We now know that the muscle is not the major issue responsible for weakness in DS mice," explained Cowley. "We need to look at the neural factors involved—from the motor systems in the brain to the neuromuscular junction—to determine the cause of muscular weakness in people with ."

Explore further: Multifactorial mechanisms underlie leg weakness in hip OA

Related Stories

Multifactorial mechanisms underlie leg weakness in hip OA

August 9, 2012
(HealthDay) -- Multiple factors contribute to leg weakness in people with hip osteoarthritis (OA), with muscle atrophy being the strongest contributor, according to the results of a systematic review published online July ...

Unraveling why children with Down syndrome have increased leukemia risk

February 22, 2012
Children with Down syndrome (DS) have an increased risk of developing leukemia, in particular acute megakaryoblastic leukemia (AMKL) and acute lymphoblastic leukemia (ALL). Through their studies in a mouse model of DS, a ...

At the right place at the right time—new insights into muscle stem cells

September 17, 2012
Muscles have a pool of stem cells which provides a source for muscle growth and for regeneration of injured muscles. The stem cells must reside in special niches of the muscle for efficient growth and repair.

Weakness in aging tied to leaky muscles

August 2, 2011
There is a reason exercise becomes more difficult with age. A report in the August Cell Metabolism, a Cell Press publication, ties the weakness of aging to leaky calcium channels inside muscle cells. But there is some good ...

Putting a 'HEX' on muscle regeneration

October 1, 2012
A complex genetic regulatory network mediates the regeneration of adult skeletal muscles. In this issue of the Journal of Clinical Investigation, researchers at the State University of New York Downstate Medical Center in ...

Recommended for you

Visual clues we use during walking and when we use them

July 25, 2017
(Medical Xpress)—A trio of researchers with the University of Texas and Rensselaer Polytechnic Institute has discovered which phase of visual information processing during human walking is used most to guide the feet accurately. ...

Toddlers begin learning rules of reading, writing at very early age, study finds

July 25, 2017
Even the proudest of parents may struggle to find some semblance of meaning behind the seemingly random mish-mash of letters that often emerge from a toddler's first scribbled and scrawled attempts at putting words on paper.

Using money to buy time linked to increased happiness

July 24, 2017
New research is challenging the age-old adage that money can't buy happiness.

Exposure to violence hinders short-term memory, cognitive control

July 24, 2017
Being exposed to and actively remembering violent episodes—even those that happened up to a decade before—hinders short-term memory and cognitive control, according to a study published in the Proceedings of the National ...

Researchers pave new path toward preventing obesity

July 24, 2017
People who experience unpredictable childhoods due to issues such as divorce, crime or frequent moves face a higher risk of becoming obese as adults, according to a new study by a Florida State University researcher.

Higher cognitive abilities linked to greater risk of stereotyping

July 24, 2017
People with higher cognitive abilities are more likely to learn and apply social stereotypes, finds a new study. The results, stemming from a series of experiments, show that those with higher cognitive abilities also more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.