Steering stem cells to become two different building blocks for new blood vessels

December 20, 2012, Johns Hopkins University
Starting with stem cells, the research team was able to create two types of smooth muscle cells needed to grow new blood vessels. Credit: Maureen Wanjare/JHU

(Medical Xpress)—Growing new blood vessels in the lab is a tough challenge, but a Johns Hopkins engineering team has solved a major stumbling block: how to prod stem cells to become two different types of tissue that are needed to build tiny networks of veins and arteries.

The team's solution is detailed in an article appearing in the January 2013 print edition of the journal . The article also was published recently in the journal's online edition. The work is important because networks of new blood vessels, assembled in the lab for transplanting into patients, could be a boon to people whose circulatory systems have been damaged by heart disease, diabetes and other illnesses.

"That's our long-term goal: to give doctors a new tool to treat patients who have problems in the pipelines that carry blood through their bodies," said Sharon Gerecht, an assistant professor of chemical and biomolecular engineering who led the research team. "Finding out how to steer these stem cells into becoming critical building blocks to make these blood vessel networks is an important step."

In the new research paper, the Gerecht team focused on vascular , which are found within the walls of blood vessels. Two types have been identified: synthetic smooth muscle cells, which migrate through the surrounding tissue, continue to divide and help support the newly formed blood vessels; and contractile smooth muscles cells, which remain in place, stabilize the growth of new blood vessels and help them maintain proper blood pressure.

To produce these smooth muscle cells, Gerecht's lab has been experimenting with both National Institutes of Health-approved human and induced . The induced pluripotent stem cells are that have been genetically reprogrammed to act like embryonic stem cells. Stem cells are used in this research because they possess the potential to transform into specific types of cells needed by particular organs within the body.

In an earlier study supervised by Gerecht, her team was able to coax stem cells to become a type of tissue that resembled smooth muscle cells but didn't quite behave properly. In the new experiments, the researchers tried adding various concentrations of growth factor and serum to the previous cells. Growth factor is the "food' that the cells consume; serum is a liquid component that contains blood cells.

"When we added more of the growth factor and serum, the stem cells turned into synthetic smooth muscle cells," Gerecht said. "When we provided a much smaller amount of these materials, they became contractile smooth muscles cells."

This ability to control the type of cells formed in the lab could be critical in developing new blood vessel networks, she said. "When we're building a pipeline to carry blood, you need the contractile cells to provide structure and stability," she added. "But in working with very small blood vessels, the migrating synthetic cells can be more useful."

In cancer, small blood vessels are formed to nourish the growing tumor. The current work could also help researchers understand how blood vessels are stabilized in tumors, which could be useful in the treatment of cancer.

"We still have a lot more research to do before we can build complete new blood vessel networks in the lab," Gerecht said, "but our progress in controlling the fate of these stem cells appears to be a big step in the right direction."

Explore further: Adult stem cells from liposuction used to create blood vessels in the lab

More information: cardiovascres.oxfordjournals.o … 1/13/cvr.cvs315.full

Related Stories

Adult stem cells from liposuction used to create blood vessels in the lab

July 25, 2012
Adult stem cells extracted during liposuction can be used to grow healthy new small-diameter blood vessels for use in heart bypass surgery and other procedures, according to new research presented at the American Heart Association's ...

Researchers discover new blood vessel-generating cell with therapeutic potential

October 16, 2012
Researchers at the University of Helsinki believe they have discovered stem cells that play a decisive role in the growth of new blood vessels. If researchers learn to isolate and efficiently produce these stem cells found ...

Cambridge team first to grow smooth muscle cells from patient skin cells

January 26, 2012
A Cambridge University research team has for the first time discovered a method of generating different types of vascular smooth muscle cells (SMCs) - the cells which make up the walls of blood vessels - using cells from ...

Recommended for you

Starting periods before age of 12 linked to heightened risk of heart disease and stroke

January 15, 2018
Starting periods early—before the age of 12—is linked to a heightened risk of heart disease and stroke in later life, suggests an analysis of data from the UK Biobank study, published online in the journal Heart.

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Two simple tests could help to pinpoint cause of stroke

January 10, 2018
Detecting the cause of the deadliest form of stroke could be improved by a simple blood test added alongside a routine brain scan, research suggests.

Exercise is good for the heart, high blood pressure is bad—researchers find out why

January 10, 2018
When the heart is put under stress during exercise, it is considered healthy. Yet stress due to high blood pressure is bad for the heart. Why? And is this always the case? Researchers of the German Centre for Cardiovascular ...

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018
Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery ...

Place of residence linked to heart failure risk

January 9, 2018
Location. Location. Location.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.