Study uncovers mechanism used by BRCA1 to suppress tumors

December 17, 2012

A new study by Georgetown University Medical Center researchers reveals how a well-known tumor suppressor gene may be functioning to stop cancer cell growth.

The findings, published online today in , focus on the gene BRCA1, which is mutated in a majority of families who have hereditary breast and/or , according to senior author Ronit I. Yarden, PhD, assistant professor in the Department of Human Science at the School of Nursing & Health Studies.

"There is a debate in the scientific community about whether BRCA1 enzymatic activity is important in tumor suppressor function," Yarden said. "My lab thinks it is."

Previous research by other investigators, according to Yarden, has shown that BRCA1 is an ubiquitin E3 ligase enzyme. When added to other proteins, ubiquitin has the ability to mark them for degradation and recycling.

Her laboratory worked to discover which proteins BRCA1 is targeting with ubiquitin and how that activity might help attenuate in response to DNA damage – a function that is important for maintaining genomic integrity and suppressing tumor growth.

"Cells have surveillance mechanisms and check points that govern cell division," she said. "In order to conduct DNA repair in a timely fashion, a cell must be stopped for awhile and then repaired. Once DNA is fixed, division can then begin again."

Yarden's lab discovered that BRCA1 targets two specific proteins cyclin B and Cdc25c, which are the "keeper genes" that regulate the G2/M checkpoint – the last checkpoint a cell has to go through before it divides.

"The paper shows that in response to DNA damage, BRCA1 is responsible for tagging these two proteins to stop the cells from dividing so repair can occur," Yarden said. "This work shows that BRCA1 enzymatic function is essential for maintaining genomic integrity and may explain BRCA1 role in tumor suppression."

"We identified a novel function," she said. "Although different substrates for BRCA1 were previously identified by other investigators, those didn't explain directly BRCA1's role in maintenance of genomic integrity. Our new targets are the first to directly link this ubiquitination function of to halting cell division that is important for maintenance of genomic integrity and stability, an important activity of suppression."

Explore further: Key function of mutation in hereditary breast and ovarian cancer gene discovered

Related Stories

Key function of mutation in hereditary breast and ovarian cancer gene discovered

September 1, 2011
It is widely known that mutations in the breast cancer susceptibility 1 (BRCA1) gene significantly increase the chance of developing breast and ovarian cancers, but the mechanisms at play are not fully understood. Now, researchers ...

Scientists show how BRCA1 cancer gene mutations harm breast cells

December 14, 2011
(Medical Xpress) -- Working with human breast cells, researchers at the Johns Hopkins Kimmel Cancer Center have shown how the inactivation of a single copy of the breast cancer gene BRCA1 leaves breast cells vulnerable to ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.