Researchers identify enzyme involved in deadly brain tumors

January 17, 2013, Mayo Clinic

One of the most common types of brain tumors in adults, glioblastoma multiforme, is one of the most devastating. Even with recent advances in surgery, radiation and chemotherapy, the aggressive and invasive tumors become resistant to treatment, and median survival of patients is only about 15 months. In a study published in Neuro-Oncology, researchers at Mayo Clinic identify an important association between the naturally occurring enzyme Kallikrein 6, also known as KLK6, and the malignant tumors.

"Our study of Kallikrein 6 showed that higher levels of this enzyme in the tumor are negatively associated with patient survival, and that the enzyme functions by promoting the survival of tumor cells," says senior author Isobel Scarisbrick, Ph.D., of Mayo Clinic's Department of Physical Medicine and Rehabilitation.

The findings introduce a new avenue for potential treatment of deadly glioblastomas: targeting the function of KLK6. The became more susceptible to treatment when researchers blocked the where the KLK6 enzyme can dock and initiate the survival signal.

Researchers looked at 60 samples of grade IV astrocytomas—also known at this stage as glioblastomas—as well as less aggressive grade III astrocytomas. They found the highest levels of KLK6 were present in the most severe grade IV tumors. Looking at the tumor samples, researchers found higher levels of KLK6 associated with shorter patient survival. Those with the highest levels lived 276 days, and those with lower levels lived 408 days.

"This suggests that the level of KLK6 in the tumor provides a prognosticator of patient survival," Dr. Scarisbrick says.

The group also investigated the mechanism of the enzyme to determine whether it plays a significant role in . Researchers also found glioblastoma cells treated in a with KLK6 become resistant to radiation and treatment.

"Our results show that KLK6 functions like a hormone, activating a signaling cascade within the cell that promotes tumor cell survival," Dr. Scarisbrick says. "The higher the level of the enzyme, the more resistant the tumors are to conventional therapies."

The study is the latest step in Dr. Scarisbrick's investigations of KLK6 in nervous system cells known as astrocytes. arise from astrocytes that have grown out of control. Her lab has shown that KLK6 also plays a role in the perseverance of inflammatory immune cells that occur in multiple sclerosis and in aberrant survival of T-lymphocyte leukemia cell lines.

"Our findings in glioma affirm KLK6 as part of a fundamental physiological mechanism that's relevant to multiple diseases and have important implications for understanding principles of tissue regeneration," she says. "Targeting KLK6 signaling may be a key to the development of treatments for pathologies in which it's necessary to intervene to regulate cell survival and tissue regeneration in a therapeutic fashion. Ultimately, we might be able to harness the power of KLK6 for the repair of damaged organs."

Explore further: Study shows halting an enzyme can slow multiple sclerosis in mice

Related Stories

Study shows halting an enzyme can slow multiple sclerosis in mice

April 30, 2012
Researchers studying multiple sclerosis(MS) have long been looking for the specific molecules in the body that cause lesions in myelin, the fatty, insulating cells that sheathe the nerves. Nearly a decade ago, a group at ...

Survival statistics show hard fight when malignant brain tumors appear at multiple sites

August 24, 2012
LOS ANGELES (Embargoed until 10 a.m. EDT on Aug. 24, 2012) – When aggressive, malignant tumors appear in more than one location in the brain, patient survival tends to be significantly shorter than when the disease starts ...

Study finds new targets for drugs to defeat aggressive brain tumor

December 14, 2012
University of Pittsburgh Cancer Institute (UPCI) researchers have identified over 125 genetic components in a chemotherapy-resistant, brain tumor-derived cell line, which could offer new hope for drug treatment to destroy ...

Minimizing side effects from chemoradiation could help brain cancer patients live longer

April 19, 2011
Minimizing neurological side effects in patients with high-grade glioma from chemoradiation may result in improved patient survival, a new study from radiation oncologists at the Kimmel Cancer Center at Jefferson suggests. ...

A culprit behind brain tumor resistance to therapy

March 5, 2012
Persistent protein expression may explain why tumors return after therapy in glioblastoma patients, according to a study published on March 5th in the Journal of Experimental Medicine.

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.