Blood vessel cells coax colorectal cancer cells into more dangerous state

February 1, 2013

Blood vessels that supply oxygen and nutrients to tumors can also deliver something else - a signal that strengthens nearby cancer cells, making them more resistant to chemotherapy, more likely to spread to other organs and more lethal, scientists at The University of Texas MD Anderson Cancer Center report online in Cancer Cell.

Working in human colorectal cancer cell lines and tumor samples, as well as mouse models, the researchers found that , which line the inside of blood vessels, can trigger changes in without even coming into direct contact with them.

This signaling by the endothelial causes colorectal cancer cells to take on the attributes of cancer stem cells, said Lee M. Ellis, M.D., professor in MD Anderson's Departments of and and senior author of the paper.

"Cancer stem cells initiate and sustain tumor growth, promote metastasis and resistance to chemotherapy and have a variety of other attributes," Ellis said. "We've identified a new way that elements of a tumor's microenvironment, in this case endothelial cells, promote the conversion of into cancer stem cells."

The team found the use a previously unknown method of activating the Notch molecular pathway in colorectal cancer cells to initiate that conversion.

Possibilities for Notch-inhibiting drugs

Notch is a receptor protein found on a cell's surface that had been thought to be activated only by ligand proteins on the surface of other cells. Cell-to-cell contact was required. Notch is important to many cellular functions, including formation of new blood vessels, but it is often haywire in cancers.

"Our findings imply that Notch inhibitors under development and now in clinical trials might be able to affect directly, through their vasculature, or both" Ellis said.

Colorectal cancer is the second-leading cause of cancer death in the United States, with 50,000 deaths caused annually by untreatable metastatic disease. A tumor's microenvironment, which includes blood vessels, supportive tissue and conditions such as hypoxia - lack of oxygen - is the soil that nurtures the metastatic tumor seed.

Jia Lu, MS, first author on the paper, and colleagues focused on the possible impact of endothelial cells on cancer stem cell promotion. In a series of experiments performed by a team of investigators at MD Anderson and other institutes, the researchers systematically laid out the connection between endothelial cells and colorectal cancer stem cells.

  • Culturing human colorectal cancer cells with endothelial cells increased the number of cancer cells that express two markers of cancer stem cells, CD133 and ALDH activity.
  • Growing cancer cells in endothelial cell-conditioned medium increased the CD133 positive cells by seven-fold, the ALDH-positive cells by 16-fold and caused a six-fold increase in sphere-forming capability, another hallmark of cancer stem cells.
  • In a mouse model experiment, colorectal cells in medium conditioned with endothelial cells led to increased tumor formation and faster growth than did cells grown in a control medium,
  • Endothelial cell conditioned medium treated colorectal cancer cells formed more metastases than colorectal cancer cells treated with control conditioned medium. In one study of liver metastasis, 9 of 10 mice injected with treated cancer cells grew liver metastases, compared to only 3 of 10 in the control group.
  • Colorectal cancer cells cultivated in endothelial cell-conditioned medium survived longer when treated with two types of chemotherapy.
  • Analyzing the presence of molecular networks known to be involved in cancer stem cell development, only the Notch pathway was activated in treated colorectal cancer cells.
  • Notch is activated in colorectal cancer cells adjacent to endothelial cells in human tumors.
  • Having previously found that endothelial cells secrete soluble proteins, the team found a soluble form of Jagged-1 activated Notch to promote cancer stem cell conversion. Jagged-1 was previously known only as a Notch-activating ligand anchored on the surface of another cell.
  • They then established that the protease ADAM17 cleaves a part of Jagged-1 off to produce its soluble form.
  • Cell line and mouse experiments showed that blocking production of ADAM17 with small interfering RNA or with an inhibitor of the protease blocked the formation of colorectal cancer stem cells.
"Reproducibility of results is important. We used multiple endothelial cell lines and colorectal cancer cell lines in these experiments and found the same thing over and over," Ellis said.

The mode of cell signaling involved in this chain of events is paracrine signaling - interaction among two different types of cells via soluble mediators rather than direct contact. However, recently Shahin Rafii, M.D., from Weill Cornell Medical College termed signaling between endothelial cells and other target cells "angiocrine signaling," terminology that Ellis supports.

Six drugs are approved for treatment of metastatic colon cancer, including ones that target blood vessels that support tumors. But there has been no dramatic improvement for patients, with median overall survival still less than two years.

With much additional research, the team's findings could lead to more refined targeted therapies for metastatic colorectal cancer.

Future studies will focus on other factors secreted by endothelial cells that promote cancer cell aggression. "It's clear that endothelial cells are more than just a conduit for blood delivery. In fact, in preliminary experiments, it appears that endothelial cells secrete more proteins than do cells. This work, of course, requires validation".

Explore further: Potential new colorectal cancer treatment target identified

Related Stories

Potential new colorectal cancer treatment target identified

October 7, 2012
(HealthDay)—The cell surface marker carcinoembryonic antigen-related cell adhesion molecule 6 (CD66c) is a novel marker for colorectal cancer stem cell isolation, which halts tumor growth when silenced, according to research ...

New role for Vascular Endothelial Growth Factor in regulating skin cancer stem cells

October 19, 2011
Skin squamous cell carcinomas are amongst the most frequent cancers in humans. Recent studies suggest that skin squamous cell carcinoma, like many other human cancers, contain particular cancer cells, known as cancer stem ...

How tumor cells create their own pathways

July 10, 2012
Metastasis occurs when tumor cells "migrate" to other organs through the bloodstream. Scientists have now discovered the trick tumor cells use to invade tissue from the blood vessels: They produce signaling proteins to make ...

Stemming the spread of cancer

September 21, 2012
Okayama University's Masaharu Seno and colleagues have demonstrated in vitro the development of cancer stem cells (CSCs) from a type of normal stem cell exposed to their hypothetical microenvironment of a tumor.

Cancer stem cell vaccine in development shows antitumor effect

April 2, 2012
Scientists may have discovered a new paradigm for immunotherapy against cancer by priming antibodies and T cells with cancer stem cells, according to a study published in Cancer Research, a journal of the American Association ...

Recommended for you

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.