Epidermal growth factor aids stem cell regeneration after radiation damage

February 3, 2013

Epidermal growth factor has been found to speed the recovery of blood-making stem cells after exposure to radiation, according to Duke Medicine researchers. The finding could open new options for treating cancer patients and victims of dirty bombs or nuclear disasters.

Reported in the Feb. 3, 2013, issue of the journal Nature Medicine, the researchers explored what had first appeared to be an anomaly among certain genetically modified mice with an abundance of epidermal growth factor in their bone marrow. The mice were protected from radiation damage, and the researchers questioned how this occurred.

"Epidermal growth factor was not known to stimulate , which is the formation of blood components derived from hematopoietic stem cells," said senior author John Chute, M.D., a professor of medicine and professor of pharmacology and at Duke University. "However, our studies demonstrate that the epidermal growth promotes hematopoietic stem cell growth and regeneration after injury."

Hematopoietic stem cells, which constantly churn out new blood and , are highly sensitive to . Protecting these cells or improving their regeneration after injury could benefit patients who are undergoing , plus others who suffer radiation injury from accidental such as the Japanese in 2011.

The Duke researchers launched their investigation using mice specially bred with deletions of two genes that regulate the death of , which line the inner surface of blood vessels and are thought to regulate the fate of . Blood vessels and the hematopoietic system in these mice were less damaged when exposed to high doses of radiation, improving their survival.

An analysis of secretions from bone marrow endothelial cells of the protected mice showed that epidermal growth factor (EGF) was significantly elevated - up to 18-fold higher than what was found in the serum of control mice. The researchers then tested whether EGF could directly spur the growth of stem cells in irradiated bone marrow cultured in the lab. It did, with significant recovery of stem cells capable of repopulating transplanted mice.

Next, the Duke team tried the approach in mice using three different solutions of cells in animals undergoing bone marrow transplants. One group received regular bone marrow cells; a second group got bone marrow cells from donors that had been irradiated and treated with EGF; a third group got bone marrow cells from irradiated donors treated with saline.

The regular bone marrow cells proliferated well and had the highest rate of engraftment in the recipient mice. But mice that were transplanted with the cells from irradiated/EGF-treated donors had 20-fold higher engraftment rate than the third group.

Additional studies showed that EGF improved survival from a lethal radiation exposure, with 93 percent of mice surviving the radiation dose if they subsequently received treatment with EGF, compared to 53 percent surviving after treatment with a saline solution.

Chute said it appears that EGF works by repressing a protein called PUMA that normally triggers stem cell death following radiation exposure.

"We are just beginning to understand the mechanisms through which EGF promotes stem cell regeneration after radiation injury," Chute said. "This study suggests that EGF might have potential to accelerate the recovery of the blood system in patients treated with chemotherapy or radiation."

Explore further: Duke research team identifies a potent growth factor for blood stem cells

Related Stories

Duke research team identifies a potent growth factor for blood stem cells

October 23, 2012
Duke Medicine researchers studying the interaction of blood stem cells and the niche where they reside have identified a protein that may be a long-sought growth factor for blood stem cells.

Studying marrow, researchers accelerate blood stem cells

December 5, 2012
(Medical Xpress)—University of Rochester Medical Center scientists are testing a new approach to speed a patient's recovery of blood counts during a vulnerable period after a stem-cell transplant, according to a study published ...

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Neal Asher
1 / 5 (9) Feb 04, 2013
Except at the Fukishima nuclear disaster one person died in a crane accident...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.