Fragile X makes brain cells talk too much, research shows

February 20, 2013, Washington University School of Medicine
brain

The most common inherited form of mental retardation and autism, fragile X syndrome, turns some brain cells into chatterboxes, scientists at Washington University School of Medicine in St. Louis report.

The extra talk may make it harder for to identify and attend to important signals, potentially establishing an intriguing parallel at the to the seen in autism.

According to the researchers, understanding the effects of this altered signaling will be important to developing successful treatments for fragile X and autism.

"We don't know precisely how information is encoded in the brain, but we presume that some signals are important and some are noise," says senior author Vitaly Klyachko, PhD, assistant professor of and physiology. "Our theoretical model suggests that the changes we detected may make it much more difficult for brain cells to distinguish the important signals from the noise."

The findings appear Feb. 20 in Neuron.

Fragile X is caused by mutations in a gene called Fmr1. This gene is found on the , one of the two . Females have two copies of that chromosome, while males only have one. As a result, males have more often than females, and the effects in males tend to be more severe.

Symptoms of fragile X include , hyperactivity, epilepsy, , and delays in the development of speech and walking. Fragile X also affects anatomy, leading to unusually large heads, flat feet, large body size and distinctive facial features. Thirty percent of fragile X patients are autistic.

Scientists deleted the many years ago in mice to create a model of fragile X. Without Fmr1, the mice have abnormalities in brain cells and social and similar to those seen in human fragile X.

According to Klyachko, nearly all fragile X mouse studies in the past two decades have focused on how Fmr1 loss affects dendrites, the branches of nerve cells that receive signals. In contrast, his new study finds significant changes in axons, the branches of nerve cells that send signals.

Normally, signals travel down the axon as surges of electrical energy. These surges only last for tiny fractions of a second, briefly causing the axon to release compounds known as neurotransmitters into the short gap between nerve cells. The neurotransmitters cross the gap and bind to their receptors on the dendrite to convey the signal.

When Klyachko monitored electrical surges along axons in the fragile X mice, though, he discovered that they lasted significantly longer. This caused release of more of neurotransmitters from the axon. When it should have stopped talking, the axon continued to chatter.

"The axons are putting out much more neurotransmitter than they should, and we think this confuses the system and overloads the circuitry," Klyachko explains. "It may also create problems in terms of brain cells using up their resources much more quickly than they normally would."

Infusing synthetic copies of the gene's protein, called FMRP, into brain cells from the mouse model rapidly restored the electrical surges to their normal length.

Additional experiments revealed that FMRP works by interacting with one of the biggest channels on the surfaces of axons. These channels let electrically charged potassium ions into the axons, helping to shape and control the duration of the electrical surge.

In healthy brain cells, the main function of these channels is to prevent the electrical surge from getting too long. With FMRP gone, the channel is active for a shorter time, prolonging the surge and overwhelming the dendrite with too much chatter.

Klyachko and his colleagues are now studying the connections between FMRP and the channel it interacts with in axons. They hope to learn more about how information is encoded and processed at the level of individual brain cells. These insights one day may help clinicians better diagnose and treat many kinds of mental disorders.

Explore further: New clue found for Fragile X syndrome-epilepsy link

More information: Deng P-Y, Rotman Z, Blundon JA, Cho Y, Cui J, Cavalli V, Zakharenko SS, Klyachko VA. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron, Feb. 20, 2013.

Related Stories

New clue found for Fragile X syndrome-epilepsy link

April 12, 2011
Individuals with fragile X syndrome, the most common inherited form of intellectual disability, often develop epilepsy, but so far the underlying causes are unknown. Researchers have now discovered a potential mechanism that ...

Fragile X and Down syndromes share signalling pathway for intellectual disability

August 3, 2012
Intellectual disability due to Fragile X and Down syndromes involves similar molecular pathways report researchers in The EMBO Journal. The two disorders share disturbances in the molecular events that regulate the way nerve ...

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Argiod
1 / 5 (2) Feb 20, 2013
The brain encodes data in a holographic manner; with bits of every memory distributed across wide areas of the brain. This allows us to remember things, even if part of the brain is damaged. I suspect that DNA is holographically encoded as well; which would explain why it is hard to find a single location for genetics that control any one feature or function.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.