Mouse models fail to reproduce inflammatory genomic response to serious injuries

February 11, 2013

Existing mouse models do not appear to accurately reproduce the human genomic response to serious traumatic injury, including major burns, according to an article appearing in PNAS Early Edition.

The report from a national consortium investigating the role of inflammation in the body's response to injury finds little correlation between the human response to burns, trauma or a bacterial toxin and that of currently used mouse models for those conditions. The authors note that their results cannot be applied to the use of mouse models for other research purposes.

"Our findings question the validity of using mouse models to mimic in humans," says Shaw Warren, MD, of Massachusetts General Hospital (MGH), co-lead author of the report. "An additional finding is that the whole-genome responses to these conditions in humans correlated well with each other, suggesting that treatments developed for an inflammatory disease from one cause might also work for with different causes."

The study is part of the Inflammatory and Host Response to Injury consortium (www.gluegrant.org), established in 2001 to investigate how the human body responds to injury, with particular attention to factors that set off excessive, uncontrolled inflammation. Based at the MGH, the program includes investigators from 20 academic research centers around the country and is led by Ronald G. Tompkins, MD, ScD, Sumner M. Redstone Professor of Surgery at MGH and co‑corresponding author of the current report.

In 2011, the group reported finding that serious injuries set off a "genomic storm" in the human body, altering around 80 percent of normal . The current study drew on information from that study and others conducted by the consortium to compare the human genomic response to inflammatory disease with that of mouse models. The investigators from MGH, the Stanford University Genome Technology Center and several other research centers combined data from four of their studies of genomic responses to systemic inflammation: two in burn or trauma patients and volunteers treated with a that produces brief flu-like symptoms and two studies of the responses in mouse models of the three conditions.

While the responses among human patients were very similar, showing highly significant changes in the expression of more than 5,500 genes, there was very little correlation with the expression patterns of corresponding genes in the mouse models. Not only was the human genomic response to inflammatory injury much greater – affecting the expression of more than three times as many genes as in the models – but it also lasted longer, up to six months in humans compared with a few days at most in mice. To confirm their findings, the investigators analyzed data from an additional 20 studies of acute inflammatory disease – 10 in humans and 10 in mice – and found a similar lack of correlation between the response of human patients and the mouse models. In all the human studies, the genomic responses were very similar, despite differences in patient age, gender, type and severity of injury or illness, treatment and outcomes.

"Mice have been used in biomedical research for well over 50 years, in part because of the cost, size, convenience, ease of genetic manipulation and social acceptability. But it is often forgotten that mice appear to be much more resistant to inflammation and infection than humans," says Warren, an associate professor of Pediatrics at Harvard Medical School. "By studying and understanding the mechanisms by which mice differ from humans, we may be able to develop treatments that help make humans more resistant to damaging inflammation. We also hope that our article will start a broader discussion among scientists, research organizations, journals and granting and regulatory agencies as to the value of mouse models in different specific circumstances."

Explore further: Traumatic injury sets off a 'genomic storm' in immune system pathways

Related Stories

Traumatic injury sets off a 'genomic storm' in immune system pathways

December 7, 2011
Serious traumatic injuries, including major burns, set off a "genomic storm" in human immune cells, altering around 80 percent of the cells' normal gene expression patterns. In a report to appear in the December Journal of ...

Researchers replicate human kidney gene changes in mouse model

May 23, 2011
University of Louisville researchers have replicated the inflammatory gene changes of a human kidney as it progresses from mild to severe diabetic nephropathy, using a mouse model developed by a UofL researcher, according ...

Animal model replicates human immune response against HIV, could revolutionize HIV vaccine research

July 18, 2012
One of the challenges to HIV vaccine development has been the lack of an animal model that accurately reflects the human immune response to the virus and how the virus evolves to evade that response. In the July 18 issue ...

Low-calorie diet may be harmful for bowel disease patients

March 20, 2012
In a surprising result, Michigan State University researchers looking at the effects of diet on bowel disease found that mice on a calorie-restricted diet were more likely to die after being infected with an inflammation-causing ...

Recommended for you

Targeting 'broken' metabolism in immune cells reduces inflammatory disease

July 12, 2017
The team, led by researchers at Imperial College London, Queen Mary University of London and Ergon Pharmaceuticals, believes the approach could offer new hope in the treatment of inflammatory conditions like arthritis, autoimmune ...

A perturbed skin microbiome can be 'contagious' and promote inflammation, study finds

June 29, 2017
Even in healthy individuals, the skin plays host to a menagerie of bacteria, fungi and viruses. Growing scientific evidence suggests that this lively community, collectively known as the skin microbiome, serves an important ...

Inflammatory bowel disease: Scientists zoom in on genetic culprits

June 28, 2017
Scientists have closed in on specific genes responsible for Inflammatory Bowel Disease (IBD) from a list of over 600 genes that were suspects for the disease. The team from the Wellcome Trust Sanger Institute and their collaborators ...

Trials show unique stem cells a potential asthma treatment

June 28, 2017
A study led by scientists at Monash University has shown that a new therapy developed through stem cell technology holds promise as a treatment for chronic asthma.

Researchers find piece in inflammatory disease puzzle

May 23, 2017
Inflammation is the process by which the body responds to injury or infection but when this process becomes out of control it can cause disease. Monash Biomedicine Discovery Institute (BDI) researchers, in collaboration with ...

Researchers reveal potential target for the treatment of skin inflammation in eczema and psoriasis

May 22, 2017
Superficially, psoriasis and atopic dermatitis may appear similar but their commonalities are only skin deep. Atopic dermatitis, also known as eczema, is primarily driven by an allergic reaction, while psoriasis is considered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.