Game of Japanese chess reveals how experts develop their capacity for rapid problem-solving

March 22, 2013, RIKEN
Activation of the caudate nucleus (orange) during intuitive generation of the best next-move, observed after training. Credit: 2013 Keiji Tanaka, RIKEN Brain Science Institute

(Medical Xpress)—The superior capability of experts to rapidly solve problems depends largely on their intuition, and it has long been known that this is related to experience and training. Although many psychological models relating to the development of intuition have been proposed to explain this phenomenon, none have been validated, and the underlying neural mechanisms remain a mystery.

Keiji Tanaka and colleagues from the Cognitive Laboratory and Support Unit for Functional Magnetic Resonance Imaging at the RIKEN Brain Science Institute have now shown that activity in the of the brain, which is related to the automatic, rapid information processing or intuition characteristic of experts, develops during the course of training. The work provides a first insight into the of the brain to extended training and hints at ways to improve the efficiency of training experts in industry.

In earlier work, another research team led by Tanaka showed that amateur players of the Japanese chess-like game of shogi plotted their best next-moves consciously using the 's highly developed . In contrast, they found that in professional players an important part of this process was unconscious or intuitive and had shifted to the head of the caudate nucleus in the basal ganglia, a much older part of the brain. This would leave the cortex free for higher-level strategy, the researchers suggested. Yet it remained unclear as to whether this shift of neural activity was entirely due to training, or dependent to some extent on pre-existing ability.

Tanaka's most recent experiments involved training 20 novices for 15 weeks in mini-shogi, a simplified version of shogi. After about two weeks and again at the end of the 15-week program, the intuition of the volunteers was tested through their ability to come up with the best next-move to end-phase patterns of mini-shogi games. To ensure the answers were intuitive, each problem was presented for just two seconds and participants had to respond within three seconds. During this process, brain activity was recorded using functional (fMRI). The researchers found that activity in the caudate nucleus developed over the training period, whereas activity in the cortex remained unchanged.

"This work should open a fruitful interaction between the cognitive psychology of expertise development and biological studies of the basal ganglia," says Tanaka. "We now would like to elucidate what computations the caudate nucleus conducts in generating the best next-move."

Explore further: Learning to control brain activity improves visual sensitivity

More information: Wan, X., et al. Developing intuition: Neural correlates of cognitive-skill learning in caudate nucleus. The Journal of Neuroscience 32, 17492–17501 (2012). dx.doi.org/10.1523/JNEUROSCI.2312-12.2012

Related Stories

Learning to control brain activity improves visual sensitivity

December 4, 2012
Training human volunteers to control their own brain activity in precise areas of the brain can enhance fundamental aspects of their visual sensitivity, according to a new study. This non-invasive 'neurofeedback' approach ...

Brain training computer game improves some cognitive functions relatively quickly

January 11, 2012
The brain training computer game "Brain Age" can improve executive functions and processing speed, even with a relatively short training period, but does not affect global cognitive status or attention, according to a study ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.