Tumors deliberately create conditions that inhibit body's best immune response

March 1, 2013

New research in the Journal of Clinical Investigation reveals that tumours in melanoma patients deliberately create conditions that knock out the body's 'premier' immune defence and instead attract a weaker immune response unable to kill off the tumour's cancerous cells.

The study also highlights a potential antibody biomarker that could help predict prognosis and identify which are most likely to respond to specific treatments.

The research, led by Dr Sophia Karagiannis and Professor Frank Nestle at King's College London, UK, was funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London.

Karagiannis and colleagues have previously shown that, in patients with , antibodies are produced that can attack . Despite this, the patient's immune system is often ineffective in preventing the cancer from progressing.

The body's (part of the immune system) produce a total of 5 different antibody classes. The most common, IgG, comprises 4 types (or subclasses) of which the researchers have shown that IgG1 subclass antibodies are the most effective at activating immune cells, while antibodies of the IgG4 subclass are thought to be the least efficient.

In this new research, the authors analysed tissue and blood donated by 80 patients from the melanoma clinic of St John's Institute of Dermatology at Guy's and St Thomas', as well as tissue and blood from healthy volunteers.

By analysing the lesions found in melanoma, the authors show that melanoma tumours not only create conditions that attract IgG4, the weakest possible response, but also that IgG4 antibodies interfere with the action of any IgG1 antibodies circulating. "We were able to mimic the conditions created by melanoma tumours and showed that B cells can be polarised to produce IgG4 antibodies in the presence of ," says Dr Karagiannis. In the presence of healthy cells, the body's immune response functions normally, and IgG1 are the main antibodies circulating.

To better understand the functional implications of IgG4 subclass antibodies in cancer, the authors engineered these two antibodies (IgG1, IgG4) against a tumour antigen and demonstrated that unlike IgG1, the IgG4 antibody was ineffective in triggering immune cells to kill cancer cells. Importantly, IgG4 also blocked the tumour cell killing actions of IgG1, thus preventing this antibody from activating immune cells to destroy tumours.

Additionally, using samples from 33 patients, the authors found that patients with higher IgG4 levels in their blood are more likely to have a less favourable prognosis compared to those whose blood levels of IgG4 are closer to normal levels. This suggests that IgG4 may help assist in predicting disease progression.

"This work bears important implications for future therapies since not only are IgG4 antibodies ineffective in activating to kill tumours but they also work by blocking antibodies from killing tumour cells," says Dr Karagiannis. "The latter means that IgG4 not only prevents the patient's more powerful antibodies from eradicating cancer, but could also explain why treatments may be hindered by those native IgG4 antibodies found in patients, making therapeutic less effective."

"Now, with the help of our NIHR Biomedical Research Centre, more work needs to be done on developing IgG4 as a potential clinical and prognostic which can improve patient care by informing clinical decisions and helping to identify patients most likely to respond to treatments," concludes Professor Nestle. Therefore, these findings are expected to inform the design and help improve the potency and efficacy of future therapies for cancer. "This study can also inform the rational design of novel strategies to counteract IgG4 actions."

The authors are now broadening the study by examining larger groups of patients. The team is analysing blood and sera from patients with melanoma and from patients with other cancers to determine whether the presence of IgG4 could inform patient outcomes or predict responses to therapy. They are also analysing the mechanisms of IgG4 blockade of new and existing therapeutic antibody candidates, and developing new antibody candidates which may be less prone to IgG4 blockade.

Explore further: Bright future ahead for antibody cancer therapy

Related Stories

Bright future ahead for antibody cancer therapy

March 15, 2012
Antibodies, once touted as the "magic bullets" of cancer care, are now fulfilling that promise and more advances are on the way, say cancer researchers at the Georgetown Lombardi Comprehensive Cancer Center

Light dynamics for cancer treatment

May 3, 2012
Research is delving into refinement of a revolutionary cancer treatment, photodynamic therapy (PDT). Using light, reactive oxygen and photosensitisers linked to specially designed antibodies, scientists are on the threshold ...

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.