Two-pronged immune cell approach could lead to universal shot against flu

March 14, 2013

Seasonal epidemics of influenza result in nearly 36,000 deaths annually in the United States, according to the Centers for Disease Control. Current vaccines against the influenza virus elicit an antibody response specific for proteins on the outside of the virus, specifically the hemagglutinin (HA) protein.

Yearly vaccines are made by growing the in eggs. The viral envelope proteins, including HA, are cleaved off and used as the vaccine, but vary from year to year, depending on what are prevalent. However, high in envelope HA proteins result in the emergence of new viral types each year, which elude neutralization by preexisting antibodies in the body (specifically the HA proteins' specific receptor binding sites that are the targets of neutralizing antibodies). On the other hand, other immune cell types are capable of mediating protection through recognition of other, more conserved parts of HAs or highly conserved internal proteins in the influenza virus.

E. John Wherry, PhD, associate professor of Microbiology and director of the Institute for Immunology at the Perelman School of Medicine, University of Pennsylvania, and colleagues, report in PLOS Pathogens that -specific CD8+ T cells or virus-specific non-neutralizing antibodies are each relatively ineffective at conferring alone. But, when combined, the virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity.

This synergistic improvement in protective immunity is dependent, at least in part, on other —lung macrophages and phagocytes. An implication of this work is that immune responses targeting parts of the virus that are not highly variable can be combined for effective protection.

"The two-pronged approach is synergistic, so by enlisting two suboptimal vaccine approaches, we achieved a better effect than each alone in an experimental model," says Wherry. "Now, we are rethinking past approaches and looking for ways to combine T-cell vaccines and antibody vaccines to make a more effective combined vaccine."

"Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide protection in humans, and act as the basis for a potential 'universal' vaccine," says Wherry.

These results suggest a novel strategy that could potentially form a primary component of a universal influenza vaccine capable of providing long-lasting protection.

Explore further: Study suggests potential hurdle to universal flu vaccine development may be overcome

Related Stories

Study suggests potential hurdle to universal flu vaccine development may be overcome

August 15, 2012
In the quest for a universal influenza vaccine—one that elicits broadly neutralizing antibodies that can protect against most or all strains of flu virus—scientists have faced a sobering question: Does pre-existing ...

Knowing origin of broadly neutralizing antibodies could aid universal flu vaccine design

August 29, 2012
National Institutes of Health scientists have identified how a kind of immature immune cell responds to a part of influenza virus and have traced the path those cells take to generate antibodies that can neutralize a wide ...

H1N1 discovery paves way for universal flu vaccine: research

May 8, 2012
University of British Columbia researchers have found a potential way to develop universal flu vaccines and eliminate the need for seasonal flu vaccinations.

Priming with DNA vaccine makes avian flu vaccine work better

October 3, 2011
The immune response to an H5N1 avian influenza vaccine was greatly enhanced in healthy adults if they were first primed with a DNA vaccine expressing a gene for a key H5N1 protein, researchers say. Their report describes ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

jmlvu
not rated yet Mar 14, 2013
I took the flu shoot and as I lie here suffering from one of the strains left out of this years vacine, I wonder which WHO official was bribed by the pharma industry to leave my stain out.
You can bet congress gets the upgraded vacine.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.